C CHOLAR
OMMONS University of South Florida

UNIVERSITY OF

SOUTH FLORIDA Scholar Commons
Graduate Theses and Dissertations Graduate School
11-16-2016

Towards Computational Human Behavior
Modeling for Just-in-Time Adaptive Interventions

Tylar Murray
University of South Florida, tylarmurray@mail.usf.edu

Follow this and additional works at: http://scholarcommons.usf.edu/etd

b Part of the Behavioral Disciplines and Activities Commons, Computer Sciences Commons, and

the Engineering Commons

Scholar Commons Citation

Murray, Tylar, "Towards Computational Human Behavior Modeling for Just-in-Time Adaptive Interventions" (2016). Graduate Theses
and Dissertations.
http://scholarcommons.usf.edu/etd/6546

This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in

Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact

scholarcommons@usf.edu.

www.manharaa.com


http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F6546&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F6546&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu?utm_source=scholarcommons.usf.edu%2Fetd%2F6546&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F6546&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/grad?utm_source=scholarcommons.usf.edu%2Fetd%2F6546&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F6546&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/980?utm_source=scholarcommons.usf.edu%2Fetd%2F6546&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarcommons.usf.edu%2Fetd%2F6546&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=scholarcommons.usf.edu%2Fetd%2F6546&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarcommons@usf.edu

Towards Computational Human Behavior Modeling for

Just-in-Time Adaptive Interventions

by

Tylar Wayne Cole Murray

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
Department of Electrical Engineering
College of Engineering
University of South Florida

Co-Major Professor: Andrew Raij, Ph.D.
Co-Major Professor: Wilfrido Moreno, Ph.D.
Eric Hekler, Ph.D.

Daniel E. Rivera, Ph.D.

Donna Spruijt-Metz, Ph.D.

Alex Savachkin, Ph.D.

Pooja Patnaik Bovard, Ph.D.

Date of Approval:
November 14, 2016

Keywords: JiTAl, CHBM, systems, HCI, avatars

Copyright © 2016, Tylar Wayne Cole Murray

www.manaraa.com



ACKNOWLEDGEMENTS

This dissertation was made possible thanks to the support of my friends, family, fellow
students, advisors, and professors. The support and guidance of Dr. Andrew Raij throughout
this work has been invaluable in my studies as a graduate student, and | cannot thank him
enough for the opportunities he has provided. Secondly | would like to thank Dr. Wilfrido Moreno
for his mentorship throughout my work as a TA and as a doctoral candidate. Drs. Eric Hekler,
Daniel E. Rivera, Donna Spruijt-Metz, Pooja Patnaik Bovard and Alex Savachkin also deserve
thanks for their help overseeing my dissertation and my research. Lastly, thanks is owed to the
University of South Florida Electrical Engineering Department for supporting me as a TA in my
early years as a graduate student, and to The Charles Stark Draper Laboratory for supporting

me as a research fellow.

www.manaraa.com



TABLE OF CONTENTS

LIST OF TABLES. ... ittt ettt ettt e e e e e e e e e e e e e e bbbttt e e ettt ettt e e e e e e e e ntaa s iv
LIST OF FIGURES. ... ..ottt et e e e e e e e e e e e e e sttt et e e e aaeaeeeaeeeeasannnnnssnsssnneneeeaeeeeees %
F N TS Y I ¥ A L PP Vi
CHAPTER 1: INTRODUCTION ...ttt e e e e e e e e e e e e e s s s s s eeeeeeeeeeeeeeassnn s e eeeeeeessnnnns 1
1.1 Behavioral Choices in HealthCare..........cccccoeeeiiiiiiiciieeeee e 1
1.2 Mobile Health (mHealth) and Behavior Change.............cccccoiiiiiiiiiiiicii e 2
1.3 New Theories Needed to Support Emerging Behavioral mHealth.............................. 3
1.4 Contributions BY CRaPLer........cooiiiieiccee e 6
CHAPTER 2: USER-AVATAR INTERACTION THEORY .....ccoi ittt 8
2. 1 WHY USE AVALAIS. .....eeteeiiiaeie e e ettt e e e e e e e et e e e e e e e e tee e e e e e e e eeeeeennneeas 8
2.2 User-Avatar Interaction EffECES........ccccuiiiiiiiiiiiiece e 9
2.3 The Language of BioBehavioral Feedback..............ccccviiiiiiiiiiiiiiiiiiiiiiiiieeeeee e 10
2.4 Adding Avatars to the BioBehavioral Feedback Model...........ccccooveiiiiiiiiiinncennn, 11
2.4.1 Encoding Attributes in the Avatar’s Physical World.............ccc.ocoeiivininnnn.n. 12
2.4.2 Encoding in the PSYCholOgiCal.............uuuviiiiiiiiiiiiiiii e 16
2.5 A Guide to Application of Avatar INterface. ... 17
2.6 Open QUESLIONS aNd CONCEINS.........ooiiiiiiiiiiii e e e e e e e e e e e e e e e e e e et e e e e aeeens 19
CHAPTER 3: GLANCEABLE M-AVATAR . ..o e 21
B 700 I 1V = 1 oo 23
3.2 Data Processing and ANalYSIS.........ccooiiiiiiiiiiiiciin e 25
3.2.1 Avatar-Intervention DOSAQE SCOIME..........cccevviiiiiiieiiiieieee e aeeae 25
3.2.2 DaAta PrOCESSING. ..eeeeeettuttinaa e e e e e e e e ettt e e e e e e e e e e e e e e e e eennaeees 26
3.2.2.1 Removing Outlier VIeW TIMES........ccovviiiiiiiiiiieeein e eeee e e 26
3.2.2.2 Accounting for Every-Other-Day Events..........cccccvvevvviiiiiiiiinnnnnn. 26
0 T8 31 =TT 1] £ 26
3.3.1 Macro-scale ‘Intervention’ Effect on the Raw Data...........ccccooeveeeeeiiiiiiennnn.. 27
3.3.2 Micro-scale Intervention EffeCt........cccceeeiiiiiiiiiie 27
3.3.2.1 Defining an Avatar View EVeNt............ccccciviiiiiiiiiiiiiineeeeeeeeiiinnn 28
3.3.2.2 The Dynamics of Post-Avatar-View Step-Count.................cceeee... 30
3.3.3 SUDQGIrOUP ANAIYSIS.....uuiiieii i e e e 30
CHAPTER 4: INTERVENTION-VIZ. ..ottt a e e e e e e e e e e e eeaeaaee e 34
o R = = 1 (T V1Yo SRR 35
4.2 Example Application: Physical ACHIVILY...........uuueiiiiiiiiiie e 36
4.2.1 CONIOl DALASEL.......uvveieiiiie i i i eee e e e e e e e e e e e e e e e e e e enes 37
4.2.2 KNOWME StUAY....ceiiiiiiiiieeee ettt e e e e e e e e e e e e e e e e eeees 37
4.2.3 MAVALAT STUAY.....couviiieieiiis e e et e e e e e e e e e e aan s 37
i

www.manaraa.com



G IR 1Y/ <1 i Lo T = RPN 38

4.3.1 Highlighting Event DYNamICS.........ccoiiiiiiiiiiii e e 38

4.3.2 Event-time AlIGNMENT.........uiiiiiiiiiieee et e e 39

4.3.3 GaUQE EMfECE SIZE......uuiiiiiiiiiiiiiiee e 41

4.3.4 STACKING. .. i iii it 42

4.3.5 Characterize Intervention Delivery Context...........cccoovvvveiiviiiiiiiiniiee e, 47

4.3.6 Comparing EVENT TYPES.....coiiiiiiiiiiiiie ettt 48

O o] od 1] T o TP 51

CHAPTER 5: COMPUTATIONAL HUMAN BEHAVIOR MODELS...........oooiiiiiiiiiiiiieeeeeeeee e 52

5.1 Selected DefiNitiONS. ... . ... et eaeeeae 54

5.2 Computational Human Behavior Models. ... 56

5.2.1 Characteristics of @ CHBM.............ooiiiiiiiiccceee e 56

5.2.1.1 User Features: Context, State, Behavior...........cccccccoeeeeeviiiieenen, 56

5.2.1.2 Relationships Between User Features..........cccoeevvvviiieiiierinecnnnnn. 58

5.2.1.3 Heuristic Interpretation............ccoceeeiiiiiiieiiiiiecee e, 58

5.2.1.4 Model Metadatal.........uuieeiiiiiieeeeiiieceeeeeee e 58

5.2.2 Creating @ CHBM.......cooiiiiiii e 59

5.3 Benefits of CHBM-enabled JITAIS........cooooiiiiiiiiiiiiiiiiieeeeeeee e 63

5.3. L APHION CHBMS....coiiiiiiiiiiieee ettt 63

5.3.1.1 Model BUIING......eeviiiiiiiiiiiiiiiiiiiee e 63

5.3.1.2 Intervention DeSIgN........ooviiiiiiiiiiiieaaae e 64

5.3.1.3 Benefits of CHBMSs in Persuasive Design.........ccccceeeeeiiiiieeeeeennnn, 65

5.3.1.4 Open Questions for CHBM-Empowered Persuasive Design....... 65

5.3.2 CHBMS at RUN-TIME......oiiiiiiiiiiiiiiieee e e e e e e e 66

5.3.2.1 Benefits of CHBMs for Persuasive Applications.............ccc.cceuu..e. 67

5.3.2.2 Open Questions for CHBM-enabled Persuasive Applications.....68

5.3.3 CHBMS POSt-STUAY......ceiiiiiiiieiiiiiiiiiiiiiee e 68

5.3.3.1 Benefits of CHBMs Post-Experiment..............coovvvviiiiiiieieneeeeeens 69

5.3.3.2 Open Questions for CHBM Post-Experiment Methods................ 69

L0 o] o o] 1113 (o o PSRN 70

CHAPTER 6: DESIGNING SOFTWARE TO AID DEVELOPMENT OF CHBM.......ccoooeevvviviinnnn. 71

L =T Voo o] (oo Y28 OO 72

6.1.1 Survey of Behavioral SCIENtIStS........ccoiiiiiiieeeei e 72

6.1.2 BehaviorSim Model Builder V1.............coiiiiiiiiiieee e 73

6.1.3 BehaviorSim Model-Building TULOral..........ccouvviiiiiiiiiii e 76

6.1.4 BehaviorSim Model BUIlder V2............uiiiiiiiiiii e 77

L B o B3] o] o PP 80

6.2.1 JITAI Developer USer PErsONa........ccocceeiiiiiiiiiieeiiis e 80

6.2.2 AdaptiVe INTEITACE.........uuiiiiiiiiieiii e 81

6.2.3 Enable QUICK ItEratioNS...........ueiiiiiiie e e 82

6.2.4 High-Level Visuals to De-internalize Models...........ccccoeeeeiiiiieiiiiiiiiiiiineee, 82

6.2.5 CUStOMIZEd INTEITACE.......cii i it 83

LSRG @] T 11 13 o) o T 83

CHAPTER 7: CONCLUSION.....cetitiittiiiee ettt e e e e e e e e e e e e e e e st e e e 85

REFERENGCES. ...ttt ettt ettt e e e e e e e e e e e e e s e ettt e e et e e aaaeeaeeeeeeessnnn e aeeeeeennnes 87
ii

www.manaraa.com



APPENDIX A: PERMISSION FOR REPRODUCTION OF MATERIALS..........cccoiiiiieeeeee, 101

APPENDIX B: IRB LETTERS OF APPROVAL.......ccciiiiiiiiiiiiicc i, 104

www.manharaa.com




LIST OF TABLES

Table 1: Example applications at each stage of interface development................ccccooeeviiieenenn, 19
Table 2: Summary of datasets analyZed............oocuiiiiiiiiiiiii e 36
Table 3: Functional form at @ach NOUE...........oooiiiiiii e 62

www.manharaa.com




LIST OF FIGURES

Figure 1: Information flow diagram for biobehavioral feedback algorithms...................ccooeennnn. 12
Figure 2: A hierarchal organization of potential avatar encoding attributes.............cccccooooeeeeeeen. 15
Figure 3: Levels of encoding attributes used to modify user perception...........ccccoovvvviceccinnneeeee. 17
Figure 4: Histogram of day step CoUNt total............cooeviiiiii i e 24
Figure 5: Histogram of avatar VIEW |€NgGENS. ...........eeiiiiiiii e 24
Figure 6: Seconds of avatar intervention dosage Per day..........ccccceeeeeiiiiieeeeeeiiieieeiee e, 25
Figure 7: Stacked bar charts of active vs sedentary day Step COUNTS..........ccvvvvrieeeeeiniiiiiiinneeeenn. 28
Figure 8: Demonstration of the placement of “View eVents”...........ccceeeeiiiiiiieie e, 29
Figure 9: Average difference (active-sedentary view event) in participant steps..............ccc....... 31
Figure 10: Scatterplot of all participants daily step counts vs avatar exposure score................. 32
Figure 11: Comparison of step-counts in 60 min following avatar view events.............cccccceenn... 33
Figure 12: Cross-correlation function showing study-wide heart rate response..............ccccc...... 39
Figure 13: Theoretical reSponses to INtEIVENLION.............coiiiiiiiiiiicie e e 40
Figure 14: Level-change dynamiC effeCtS.........coooii i 40
Figure 15: Aligned event responses surrounding the control intervention...............ccccccceeereeeee. 42
Figure 16: Aggregated step counts surrounding control intervention events...............c..cceeeeeeenn. 43
Figure 17: Average heart rate for each participant surrounding an intervention event................ 44
Figure 18: Stacked bar chart showing accelerometry for each participant.......................cccouen.e. 45

Figure 19: Aggregation of step counts showing dramatic response to the control intervention...46

Figure 20: Heart rate data aggregated across KNOWME participants..........cccceeeveieeeevevineerennnnn. a7
Figure 21: Stackplot of step count aggregates from the mAvatar dataset.............cc..cccevevenerennn. 49
v

www.manaraa.com



Figure 22: Active-event series average minus sedentary-event series average............ccoeeeeeeenne 50

Figure 23: BehaviorSim v1 “think” User interface............oouuuiviiiiiiiii e 73
Figure 24: BehaviorSim V1 “draw” SECHON.............oiiiiiiiiiiiiiieee e e e e e e e 74
Figure 25: BehaviorSim vl “specify” USEr INTEIfaCE.........ccuuiiiiiiiiiiieieeeeeee e 74
Figure 26: BehaviorSim tutorial merging time-series and information-flow graph....................... 77
Figure 27: BehaviorSim Model Builder v2 combines elements into a single view...................... 78

Vi

www.manharaa.com




ABSTRACT

The advent of powerful wearable devices and smartphones has enabled a new
generation of “in-the-wild” user studies, adaptive behavioral intervention strategies, and context
measurement. Though numerous proof-of-concept studies continue to push the limitations of
what a behavioral scientist can do with these technologies, there remains a major
methodological roadblock separating behavioral theory and application. Avatar-user interaction
theory, for example, is not well defined in its formulation, and thus guidelines for intervention
designers depend on heuristic methods and designer intuition. Computational modeling has
been slow to move into behavioral science in general, but a growing population of behavioral
scientists recognize this shortcoming and are eager to apply new technology to their work. In
order to help close this disciplinary rift between systems engineers and behavioral scientists,
human-computer interaction principles must be applied to make the seemingly inaccessible
“magic” of modeling and simulation techniques accessible to behavioral scientists. Thus, this
dissertation presents formative work to help bring engineering methodology to human behavior
modeling and simulation.

Using theories of avatar-user interaction theory, physical activity regulation, and
“information overload” as applications to drive toolkit design, usability considerations and
interface needed to connect behavioral scientists with dynamical systems modeling are
explored. A number of challenges unique to the modeling of human behavior and quirks of
extant modeling efforts in behavioral science mean that existing modeling tools do not satisfy

the needs of the community, and a novel design to address these shortcomings is presented.

Vil
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Exploration of the fundamental design questions which arise from application of
engineering principles to this unique problem will produce quality publications in software
engineering, HCI, and behavioral science. Furthermore, both the “behaviorSim” toolkit and the
innovative inclusion of modeling and simulation represent significant contributions to the

development and application of human behavioral theory.
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CHAPTER 1: INTRODUCTION

1.1 Behavioral Choices in Healthcare

Leading research indicates that poor personal health decisions are the leading cause of
death [1, 2]. Health-care costs attributable to obesity alone are projected to double every
decade, engulfing an estimated 16-18% of total US health-care costs by 2030 [3]. Behavioral
interventions have been shown effective at initiating a change in health decisions related to
obesity [4, 5] and smoking cessation [6, 7]. Despite significant advances in the theory and
practice of behavioral science, humans continue to make poor behavioral choices on a daily
basis, and the reasons for those choices remain an open research challenge. The
consequences of these daily choices are often insignificant in the moment, but over time build
up to larger individual and societal problems.

Habitual inactivity, poor diet, and smoking are likely to lead to a variety of health
problems (e.g., obesity, diabetes, heart disease, cancer, chronic pain, depression, etc.), lower
quality of life and shortened lifespan [8, 9, 10, 11]. Similar challenges exist outside the realm of
personal health. Academic success is a function of attending class and completing assigned
tasks, among other daily behaviors [12]. In personal finance, poor day-to-day purchasing
decisions can add up to large financial debts [13].

From stress disorders, sedentary behaviors (sitting at a computer all day) [14], poor
eating choices (i.e. choosing french fries over salad) [15] and addictive substances, modern

society is plagued by chronic illnesses avoidable through behavior change.



1.2 Mobile Health (mHealth) and Behavior Change

Health behavior change methodologies are rapidly evolving thanks to recent advances in
mobile health technologies. The recent emergence of mobile and wearable devices as a
platform for biomedical data collection, processing, and display has enabled a new generation of
“in-the-wild” user studies, adaptive behavioral intervention strategies, and context measurement.
The ubiquitous nature of these wearable, pocket technologies offers unprecedented
opportunities for appropriate and timely biobehavioral feedback anytime and anywhere.
Proof-of-concept mobile health (mHealth) systems have changed health behaviors and
outcomes with varying levels of success [16, 17, 18].

Pedometers alone have been shown to increase physical activity by providing step-count
feedback [19, 20], however the staying power of these changes is largely unknown. Step-count
data can also be used to set adaptive goals which best motivate positive changes in participant
behavior [21].

SMS text messaging has been shown to be effective at motivating behavior change in
many domains including diabetes management, smoking cessation, and increasing of physical
activity. Effective text messages typically incorporate regular reminders [20, 22], support
messages [23, 24, 25], and feedback [26, 27] to individuals as well as for collection of data [28].

The confluence of pervasive sensing, machine learning, network access, and
computation is facilitating new approaches to data collection and adaptive interventions.
Systems can detect behaviors and psychological states such as stress [29, 30], physical activity
[31, 32], social interaction [33], and smoking [34], automatically and often in real-time. These
data streams provide new opportunities for mobile behavioral interventions that help users make
better in the moment behavioral choices related to health [35,36], productivity [37, 38, 39],

personal finance [40], and environmental stewardship [41].



Researchers theorize that an intervention which can tailor based on the user and context
may be an elegant solution to empower self-management of unhealthy behaviors like substance
abuse, overeating, and sedentary behavior [42]. These persuasive technologies aim to utilize
contextual information (i.e. data collected from the participant's surroundings and history) to
deliver personalized interventions at the optimal moment in time. One emerging class of
persuasive technologies which aim to leverage real-time behavioral data is the “Just-In-Time
Adaptive Intervention” (or JiTAI) which describes an intervention that adapts to an individual's
changing needs and circumstances to deliver tailored support at the time when it is most
needed [43]. These interventions use data that characterizes the context and individual history
of the participant to adapt the intervention and present a maximally potent action at the optimal
time. Imagine, for example, an anti-stress application which knows not to interrupt work
meetings, but also knows when to play a favorite song to help relieve stress on the drive home.
Or consider a smoking cessation application that knows precisely when and where craving is
most likely before the desire to smoke is noticeable (on a work break, for example), and prompts
the user to play a distracting game until the vulnerable circumstances have passed. Real-time
monitoring of data to identify vulnerability to poor behavioral decisions or receptivity to
intervention at any given moment is possible [44], and proof-of-concept applications have
demonstrated the ability to adapt interventions to users [45, 46] and context [47, 48]. Although
the potential applications of JiTAls are numerous, there remain significant challenges to be
overcome by the research community before the potential of JiTAls can be unlocked.

1.3 New Theories Needed to Support Emerging Behavioral mHealth

A major limitation on the path to digitally-enhanced self-control is our limited

understanding of why and how people make unhealthy choices in spite of goals. Current

methods for conceptualizing the system driving human behavior take a piece-wise, descriptive



approach, examining a phenomenon in detail, but often overlooking how the model fits into the
bigger picture. These methods are sufficient for analysis of traits which do not change much
over days or weeks, but data collection and intervention delivery timing is now available to the
microsecond for physiological data, behavioral features at the minute-level, and psychological
constructs (via EMA [49]). JiTAls can be tailored and delivered through automated messaging
systems, smartphone applications but “a major gap exists between the technological capacity to
deliver JITAls and existing health behavior models.” [42]

Extant behavioral theories focus on nomothetic and static insights that do not offer the
granularity and specificity to support the full potential of JiTAls [50]. The extreme level of detalil
required to allow a JiTAl application to select from the myriad of intervention options,
intervention timings, and tailoring features based on the growing set of contextual information
available (including intervention history) is not offered by any modern behavioral theories. Such
an application requires a detailed quantification of the relationships between contextual inflows
and the selection of intervention options. Furthermore, these relationships may be unique to
each participant, and may need to be personalized.

A common approach to the problem of inte prevention adaptation, tailoring, or
timing-optimization is to use a set of if-then-style decision rules which define the behavior of the
application. For instance, consider the following simple rule: if the user has been sedentary
recently then deliver the intervention. This intervention is JiT, but it is not adaptive. The rule
could be modified to use location context to adapt the intervention, perhaps delivering a different
kind of intervention at work and at home and not intervening at all in the car. Expressing this
increase in complexity can become quite wordy, but the behavior is fairly straightforward to
express in pseudocode:

IF has_been_sedentary

IF home
Interventioni

4



ELSE IF work
Intervention2

If-then and if-then-else logical structures like these are common across many programming
languages and are an effective means for codifying the behavior of systems with relatively few
conditional statements, but by using current methods the complexity of the behavioral model
underlying a JiTAI application grows exponentially as the complexity of the intervention design
increases. This is because with each additional contextual consideration or intervention tailoring
option made available, each cross-condition must be considered. In our initial example we
started with two contextual states (sedentary, non-sedentary) and two intervention options
(intervention, no intervention), leading to a single if-else statement which expresses intervention
output at the two possible states. After adding an additional contextual element with three states
(work, home, car) we now must express behavior at six possible user states in our decision rule
structure. Consider now an application which takes into account 10 distinct locations as well as
3 levels of physical activity, 3 levels of eating behavior health, and 3 levels of sleep quality
measured over the past hour, day, and week; such an application must describe behavior
across 810 possible user states. Decision trees allow for more concise expression of
if-then-style application behavior, but the complexity of system behavior required for realistic
application of JiTAls is not feasibly expressed in the form of decision rules.

A more robust method of codifying application behavior is to develop a mathematical
model of the decision process. Machine learning techniques can be used to develop a data
structure that can apply controls to the system or predict system outcomes. Such a model might,
for example, learn the correlations between contextual variables and the intervention which best
optimizes behavior. The model could then be used to determine which intervention should be
delivered given the user’s current context. Unfortunately, training a machine learning model from

data alone requires a large amount of data to learn from. Multiple data points in each dimension



of intervention tailoring and contextual input would be needed. This means that as the number
of ways to tailor an intervention increases, the data becomes increasingly sparse. The problem
of context-intervention training data is compounded by the fact that behavioral responses to
interventions are extremely varied and difficult to predict. Due to the extreme complexity of the
human system, behavioral datasets will be plagued by unaccounted confounds and unexplained
behavioral responses. Even further complicating this problem is the notion that there may not be
a single model which works for all users; users may differ so greatly from one another that data
may not hold predictive value across users.

An alternative approach to the use of machine learning to encode the decision process is
to build a model of the system based on a priori assumptions about the model structure which
can then be used to optimize the delivery of interventions. Using a model of the human system
to optimize intervention delivery may also have the benefit of helping to inform intervention
designers based on the underlying theory of the model. This control systems approach is not yet
popular in the behavior science community, but methods of model-based control for intervention
optimization have been proposed for treatment of fiboromyalgia [51], tobacco addiction [52],
childhood anxiety [53], gestational weight gain [54]. In order to close the gap between systems
modeling and behavioral science new behavioral theories, new terminologies, and new
experimental methods need to be developed.

1.4 Contributions by Chapter

To further motivate the need for better modeling in the development of JiTAIs, the next
chapter of this dissertation presents a myriad of avatar-based intervention options available.
This example application domain demonstrates the complexity of designing an adaptive
mHealth intervention, even without the additional complications of intervention timing and

multiple streams of contextual information. The use of avatars specifically highlights an



under-explored portion of behavioral theory with many nuanced and poorly understood
intervention tailoring options, making this study of avatar-user interaction an effective means of
showcasing the shortcomings of extant intervention design methodology.

To delve deeper into the issue of avatar-based intervention design chapter three
presents the design of a glanceable mAvatar and the results of a preliminary study to explore its
effects on youth. In this chapter, the study opens more questions about the implicit human
system model. The study shows no statistically significant difference between interactions, but
participant responses are overwhelmingly positive and seem to support our theories of
user-avatar interaction. The chapter ends with a call for better methods of modeling user state
and analyzing mHealth data.

In an attempt to better analyze the effects of mHealth “interventions” like the mAvatar,
chapter four introduces methods for visualization-based analysis of in-the-wild behavioral data.
Through exploration of three physical activity datasets (including the mAvatar), our methods
reveal effects which go unnoticed by traditional statistical analysis. These findings further hint at
the need for more robust modeling of the human system in that existing models do not account
for the observed dynamical behaviors we see in the data.

The fifth chapter of this dissertation presents a vision of applied behavioral modeling
through formalization of computational human behavior models. In chapter five terminology and
concepts to bridge the gap between systems modeling and behavior science are presented.

In closing, the sixth chapter steps back again, outlining a broad range of preliminary data
from a series of studies which investigate the emerging role of various software as tools to

enable human system modeling for behavioral intervention design applications.



CHAPTER 2: USER-AVATAR INTERACTION THEORY?

User-avatar interaction theory as presented in this chapter serves as an example
behavioral theory which may underlie an mHealth JiTAI application. The merits of using avatars
specifically are discussed, and the details of using an avatar as an intervention or as an
interface to communicate personal health data are covered.

2.1 Why Use Avatars

The use of avatars as an interface is valuable in that avatars are a visualization primitive
which can encode a great deal of information simultaneously. Furthermore, avatars are uniguely
useful in that they leverage our innate abilities to interpret the human form. The 'bandwidth’ of
traditional visualization strategies is being strained by the ever-growing influx of data, and yet
emerging ’'affective computing’ [55] methods call for even more highly tailorable interfaces.
Avatars are uniquely suited to fill the role of influencing behavior due to their use of the
human-like form as a communication medium. Humans constantly communicate using their
bodies by changing their appearance and behavior, and understanding the meaning behind
these changes (i.e. social cognition and perception) is typically hard-wired into our thought
processes [56]. The bandwidth of this interaction is immense when contrasted with current data
visualizations; humans have evolved to interact with other humans (and we do it very well),

whereas graph interpretation must be learned and can only span a few dimensions before

! This chapter has been adapted from an article published and presented at the International
Conference of Design, User Experience, and Usability. Murray, T., Hardy, D., Spruijt-Metz, D., Hekler, E.,
& Raij, A. (2013, July). Avatar interfaces for biobehavioral feedback. In International Conference of
Design, User Experience, and Usability (pp. 424-434). Springer Berlin Heidelberg. Permission to
reproduce here is included in Appendix A.

8



becoming overwhelming. Thus, manipulating the form of human-like avatars has the potential to
be a powerful, effective, and easy-to-understand communication format.

In addition to the theoretical support for avatar interfaces, there is also significant
empirical evidence that human-like avatars do influence behavior. Previous research indicates
that there are at least two mechanisms whereby digital self-representations can influence
individuals: the Proteus Effect and operant conditioning.

2.2 User-Avatar Interaction Effects

The Proteus Effect occurs when an individual conforms to implicit cues from a self-like
avatar. Several studies on the Proteus Effect in non-mobile contexts indicate that manipulating
an avatar’'s appearance and behavior affects a user’s behavior in the real world. For example,
seeing one’s avatar running on a treadmill can encourage physical activity [57]; using an elderly
avatar improves attitudes towards the elderly and increases saving for retirement [58, 59]; using
an avatar to saw virtual trees encourages less paper use [60]; and manipulating an avatar’s
gaze can make the avatar more persuasive [61, 62]. In these cases, the Proteus Effect
demonstrates how an avatar can exert an influence over users’ perception of themselves and
over their behavior. Although the precise psychological mechanism for this influence requires
more investigation, one plausible theory is that users see their avatar as a model for their own
behavior [63]. Alternatively, the avatar’s influence could be explained by a perceived relationship
between the user and his/her avatar (i.e., a shared identity [64] or an empathetic bond [65]).

Operant conditioning can influence behaviors by having an avatar function as a visual
representation of success or failure. Even when avatars do not take an explicitly human form,
they appear to influence behavior via this mechanism. For example, previous work has explored
the use of an avatar as an operant conditioning agent and feedback mechanism for promoting

physical activity. In this chapter, the physical activity of an individual is mapped to the actions



and mood of an anthropomorphized virtual bird avatar [66, 67]. As physical activity increases,
the bird becomes happier and more playful, flies faster, and sings more songs. Pilot work
suggests that this avatar can promote increased physical activity among individuals [67]. Moving
one step further from 'user-likeness’, Fish’'n’Steps translates daily steps into the growth and
happiness of a virtual fish [68]. Even more abstract from the concept of "avatar’, UbiFit displays
a garden on the background wallpaper of a phone. The garden is similar to an avatar which
displays a user’s history, providing feedback on the user’s physical activity when glancing at the
phone [69].

These examples, though spanning varying degrees of 'avatar-ness’, still serve in some
sense as virtual representations of the self. Behavior change applications nearer the abstract
edge of the user-likeness spectrum allow for more creative designs, but sacrifice benefits of
innate interpretation. The distinction between avatar and non-avatar systems is not well defined
currently, however future research will likely reveal that the display must meet some
(personalized) criterion of realism, interactivity, self-presence, customization, or abstraction to
be considered self-like enough to utilize the Proteus or similar effects.

This evidence, when combined with conceptual knowledge of human-avatar interaction,
suggests that the use of avatar-like interfaces may create behavior change through motivation,
rather than purely informative visualization methods. Thus, avatars may be a powerful new
technological medium for providing core methods for behavior change based on behavioral
science (i.e., goal-setting, self-monitoring, modeling, and positive reinforcement).

2.3 The Language of BioBehavioral Feedback

Before we are able to identify guidelines for the use of mobile avatars in biobehavioral

feedback, we must first have an abstract model of information flow and interaction in any

biobehavioral feedback system (with or without avatars). Figure 1 is a pictorial representation of
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the components of a generic biobehavioral feedback system and the information flow within it. It
is important to note here that we use the term 'feedback’ in a loose sense in which it represents
any output to the user based on user input which may affect future user behaviors. Starting from
the top-left of figure 1, a description of the user’s current behavior (input) is provided via
self-report or sensor. This description of in-the-moment user behavior is passed to a feedback
algorithm, along with any relevant historical information. Some examples of historical
information which may be taken into account are the previous day’s user behavior, feedback
given to the user previously, or data on the impact of a particular form of feedback on the user.
With in-the-moment and historical information, the algorithm then generates the feedback.
Output is then observed which may or may not immediately convey the feedback. As a
demonstration of this model, consider a typical time-series feedback visualization which displays
level of physical activity inferred from accelerometers. The input in this scenario is the
accelerometer data. The feedback algorithm includes the method of inferring physical activity, as
well as the mapping of activity level to a 2D plot of timestamps and activity. The graph of past
physical activity (created from the mapping, user settings, and/or input parameters for graph
creation) makes up the virtual world, and the user navigates the world through a pan/zoom
window, which determines the output.
2.4 Adding Avatars to the BioBehavioral Feedback Model

An avatar-based implementation of the model presented differs from a more traditional
visualization system only in the feedback algorithm and the output to the user. Design of the
feedback algorithm to map input to output is a complex task, which cannot be properly explored
without better knowledge of the avatar outputs available.

Guidelines for the outputs of conventional data visualization are well established [70];

here we aim to identify and organize the wide variety of outputs available to an avatar display

11



and move towards the identification of similar guidelines. Just as the use of item location, color,
and size can be used to convey information in a chart or graph, we propose that characteristics
of the avatar display can be altered to convey information. However, the critical difference
between innate avatar interpretation and learned graph reading suggests that the most useful

encoding attributes of an avatar are based in the psychology of avatar perception.

tory
input
‘what the user
has done'
‘ output saved
user feedback \ 2 ual
algorithm
9 changes wotl

'what the user
has seen’

Figure 1: Information flow diagram for biobehavioral feedback algorithms.

2.4.1 Encoding Attributes in the Avatar’s Physical World

Encoding attributes available in an avatar display are more numerous than those
available in other visualizations due to the extremely vast amount of information humans can
gain from interaction with another human-like entity. Many of these attributes, however, may
have subtle or implicit influence, and impact can differ significantly from person-to-person. Here
we present a generalized hierarchy to describe all conceivable changes which can be made to
the physical world of an avatar. A consideration of this hierarchy can help a designer find the
proper encoding attribute(s) to ensure that the effect on targeted behavior is maximized while

reducing other, undesired user perceptions of avatar trait changes.
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Changes to the avatar primitive in the most obvious form modify the avatar itself in some
tangible way. These are attributes which fall under the physical branch. Much like existing
visualization strategies, an avatar’s size, location, shape, color, etc. can be used to convey
information, though in the case of an avatar these encodings often have built-in meaning to a
user. For instance, inversely relating the level of daily physical activity into the width of the
avatar (so he/she appears to grow thinner with exercise) is intuitive, but encoding the same
value proportionally seems to send the wrong message to users, since he/she would appear to
grow less fit with additional physical activity.

In addition to the encoding attributes available in an avatar's appearance, avatars
provide an additional ability to convey information via a change in their behavior. Attributes
under the behavioral branch can be as simple as a change of behavior 'class’ for pre-scripted
avatars (e.g. from a physically active behavior to a more sedentary behavior [71]) or may involve
character attributes that should be reflected in avatar behavior. For example: a case in which an
avatar demonstrates increases in strength by an ability to lift heavier objects is more than just a
change in avatar behavior (lifting objects); it is a change in avatar traits (strength). Another set of
behavioral attributes available to designers are the ’behavioral biometrics’ - i.e., the personal
characteristics of behavior such as gait, voice timbre, and typing rhythm [72].

In addition to manipulation of the avatar primitive, algorithms may manipulate the virtual
environment in which the avatar resides in order to affect user perception of the avatar. These
attributes fall under the environmental branch. Changes to the environment can be cosmetic or
more complex, and in many cases can have profound impact on the avatar display. For
instance: avatar location and surroundings can be manipulated to go along with a behavioral
avatar change (e.g., the avatar takes a trip to the beach to encourage the user to relax).

Environmental changes can play an even larger role for avatars used in games; changes in the
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virtual environment can be used as gameplay elements. Location and virtual object
removal/addition/manipulation can be used as indicators of progress or accomplishment.
Similarly, aspects of the environment may be manipulated to behave differently towards the
avatar (e.g., a computer-controlled agent becoming friendlier to one’s avatar as a social reward
for desired behavior).

The hierarchy represented by Figure 2 demonstrates the wide variety of encoding
attributes available to visualization designers organized by the categories outlined. This is not
intended to be an exhaustive list of possible encoding attributes, but encompasses many
possibilities in an organized fashion, so that we may have a language to discuss avatar display
changes just as we would discuss changes in shape, color, location, etc. of traditional data
visualization. Though all possible attributes cannot possibly be included, we believe that all
possible encoding attributes logically fall within the first-level categories presented (physical,
behavior, and environment). Some further subdivision is shown, and attributes themselves can
in some cases be further broken down (i.e. size subdivided into size of individual body parts).

Each encoding attribute can also be divided into two primary types: 1) literals - these
changes have a noticeable, immediate effect on the avatar and are constantly observable.
Examples include height, body shape, facial expression, current behavior, and current avatar
location. 2) traits - these changes typically have a more subtle effect on the avatar; they are
numerical values which describe a certain intangible property of the avatar or virtual
environment. Examples include avatar proficiency at a task, behavioral biometric characteristics,
and virtual character interaction characteristics. Avatar traits are a common theme in modern
games, where a user may achieve a new ’'level’ or acquire a new 'power up’ which will modify
their gameplay. Traits typically will trigger a change in the value of a literal, but this change may

not be apparent until a certain action is performed or as time passes. Strength, for example, is
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only observable when performing a strength-dependent behavior, and may display in multiple
ways (e.g. speed of lifting, reduced apparent strain of lifting, increased lift height). These primary
types of attributes can be found at any place in the formulated hierarchy; more examples of

‘traits’ and ’literals’ can be identified by color as blue and red, respectively, in Figure 2.
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Figure 2: A hierarchal organization of potential avatar encoding attributes.

In many cases, multiple physical attributes of the avatar could be changed to express a
single change. This is the case for dramatic changes in avatar identity, such as changing an
human-like avatar to a plant-like creature as a reward for adopting environmentally friendly
behavior or transforming the avatar’s head into a greasy cheeseburger to encourage changes in
diet. It must also be considered that many of these principles can perhaps apply for individual
body parts (e.g., eye color, hair length, etc.). Given the practically unlimited options available to
an intervention designer, it becomes important to rely on heuristic knowledge of behavioral

theory and extant interventions to guide design choices. One way to avoid becoming
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overwhelmed with possibility is to consider a higher level of abstraction based on psychological
interpretation of the human form.
2.4.2 Encoding in the Psychological

Changes in avatar appearance can be simple changes to physical or behavioral literals
(e.g. change in avatar height or change in running speed), but these types of changes do not
differ in principle from more traditional data visualization unless they can be interpreted without
explanation. That is, a non-intuitive encoding strategy such as using avatar height to encode
sleep quality is, in principle, a bar graph with human-shaped bars. However, when using an
avatar primitive, simple encodings will almost always have a complex psychological effect on
the user. For instance, encoding a user’s caloric intake in the overall size of an avatar could
have the unintended consequence of making the user view the avatar as more attractive as
he/she grows taller. This complication arises because the mapping from the user’s interpretation
of the avatar to the physical or behavioral space of the avatar is not well defined; indeed, a
simple change in the physical space almost always creates complex changes in the user’s
perception of the avatar.

Avatar displays designed to leverage the psychology of avatar interpretation should
instead aim to adjust the user’s perception of a specific, high-level trait of the avatar which is
relevant to the targeted behavior change. For instance, one could aim to change the perceived
abilities of the avatar by making it appear frail, weak, or elderly. By attempting to encode values
in high-level interpretation rather physical traits, we can utilize heuristic knowledge of
human-form interpretation in our intervention design. Figure 3 provides a minimal demonstration

of selected 'low-level’ physical attributes and 'high-level’ psychological encoding attributes.
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2.5 A Guide to Application of Avatar Interface

The work of Yee et al. [73] provides some example of avatar visualization design from
the psychological perspective. Experiment designers wished to modify a psychological construct
(the attractiveness of the user) and did so by using height as a proxy based on existing
research. To further deepen the effect, other modifications could have been made to the avatar
in order to modify the perceived attractiveness. For instance, adjusting the facial features [74]
could have also been used. Care must be taken not to assume that multiple changes combine
linearly, however. In general, adjustment of multiple encoding attributes could cause an entirely

different effect than the original two.

Levels of Value Encoding Avatar Attributes
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Figure 3: Levels of encoding attributes used to modify user perception.

Below we describe suggested stages of development for designing an avatar interface.
Like many design processes, traversing the stages is iterative in nature; progression through the
stages often reveals a need to return to a previous stage to further refine the design. A constant

re-checking of past decisions is crucial to creating an avatar interface that is coherent across all

17



dimensions of the system. We present some novel examples as well as some from literature at
each suggested stage in Table 1.

1) Identify Behavior Change Plan - In this step one must identify our general plan for
behavior maodification. The targeted behavior must be explicitly defined and a theoretical basis
for motivating a change must be found. In this chapter we argue that motivation for change is
generated with avatars through both the Proteus effect and operant conditioning, but other
psychological theories could be applied here as well. Existing literature provides additional
guidance on the use of behavioral theories within an HCI context [75], as well as explanation
and tools for defining, understanding, and describing behavior change [76, 77].

2) Identify Target Trait in User’s Perception - Once we have an overall plan for motivating
change, we must identify precisely what part of the user’'s perception of the avatar we aim to
use as the encoding attribute. The resulting ’high-level’ trait(s) should come from behavior
change literature or designer intuition and not from the hierarchy of low-level traits and literals.

3) Map the Target to Avatar’s Physical Encoding Attributes - Once the targeted high-level
encoding attribute is found, the desired effect should be mapped to physical changes in the
avatar such as those laid out in Figure 2. At times an easily manipulable physical attribute can
act as a proxy for conveying a more psychosocial concept (e.g.: perceived attractiveness could
be changed by manipulating height or facial symmetry), but in many cases there may not be
significant literature on perception of the targeted attribute. Sometimes this mapping is so
intuitive that researchers may (rightfully) not see it worthy of investigation; for example:
perceived age can certainly be conveyed via wrinkling of the skin and whiteness of hair.
However, it is important to explicitly consider this process of assumption to ensure that the
targeted trait is conveyed most effectively. Returning to Figure 3, this process moves us

leftwards away from the high-level user-perception space. In fact, encoding attributes must be
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reduced leftwards completely to the avatar’'s physical space in order to implement encoding
attributes, which, in turn, forces the user to do a great deal of interpretation. Here an
understanding of the target audience is extremely important, since cultural or personal
differences can greatly change user interpretation. Just as in human-human interaction,
subtleties such as clothing, posture, and body language carry a great deal of information to the
user - even if designers do not intend them to. In this way, all physical attributes are constantly
interpreted, so implementations should be carefully checked for potential misinterpretation.
Ultimately, some confounds and unintended effects are inevitable, but at this stage we minimize
potential harm through careful consideration and iterative testing of many possible mappings.

Table 1: Example applications at each stage of interface development. Three examples given
based on existing research, and two hypothetical examples.

Outline Behavior Change Plan Identify targeted trait(s) map to Avatar's Physical Encoding Attributes
to improve eating habits subjects are shown a mood of the pet is the mood of the pet is conveyed on a scale between
virtual pet with mood determined by the targeted trait happy and sad through images with varying facial

Time to Eat [21] healthiness of breakfast expression, posture, and text.
The happiness of a bird avatar is determined  percieved level of the mood of the bird is shown via increased flight
by user level of physical activity. happiness of the bird is the speed, and increased song singing.
MILES [17] targeted avatar trait

hypothesis: increase in avatar attractiveness  Percieved avatar Avatar height used as a proxy for 'attractiveness'
changes subject’s social behavior attractiveness is targeted

Yee et al. [24] trait.
Desire: reduce overall stress. Motivate levels of stress’ and levels level of stress' conveyed via frizzing of avatar's
behavior change via operant conditioning; of happiness’ need to be hair, hands placed on temples, bags under eyes,
users see avaltars recieve rewards and conveyed amount of steam coming out of ears. ‘level of
experience happiness when avatar is relaxed, happiness' via smile achieved through

stressReduce unhappiness when avatar is stressed. manipulation of mouth and eyes.
to increase user physical activity (PA) viathe  Aim is to modify user's scale of percieved level of PA created using
proteus effect user is presented with PA avatar percieved level of avatar activies of varying intensity. Running, bicycling,
to increase desire to be PA. Avatar mirrors physical activity swimming are 'high’ PA level; walking, playing
user level of PA as measure from catch are ‘'medium’ PA level, sleeping and
accelerometers most of the time, but studying are ‘low’ PA level.

occasionally ‘suggests' a higher level by simply
ActivitySuggest displaying it.
2.6 Open Questions and Concerns
The dangers of unintended consequences via misinterpretation may become more
serious as we develop systems with more powerful behavior change methods and as we first
explore these uncharted methods for providing feedback via avatars. The problem of

misinterpretation becomes an even greater concern for the described systems since the method
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of interpretation for these outputs to the user is no longer something which is taught, but can be
entirely dependent on the user’s perception of the avatar. For example, a user who may suffer
from distorted bodily self-perception may interpret the body shape of the avatar much differently
from the norm.

One of the largest challenges remaining for an implementation of human-in-the-loop
feedback with avatars is that the method of mapping inputs to outputs (the algorithm itself) may
need to vary from application to application and from user to user. Due to the large search
space, identifying the best mapping from input to output may require significant iterative design
and personalization along with advanced analytic methods such as the use of control systems
engineering and dynamical systems modeling [78].

In conclusion, the design process for avatar interfaces is given some foundation through
the use of described methodology, but much more exploration is needed to address the
guestions posed throughout this chapter. Through additional implementations guided by
behavior change theory, it is our expectation that avatars will prove an extremely powerful tool
for behavior change science. However, additional research into the modeling and analysis of
data for systems which adapt to users’ needs and deliver complex interventions in-the-wild are

prerequisite to a deeper understanding of user-avatar interaction.
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CHAPTER 3: GLANCEABLE M-AVATAR

Chapter two explored the use of avatars as a behavior-change interface; to expand on
this front, chapter three presents data from a self-avatar-based, glanceable intervention
targeting physical activity behaviors in adolescents (aged 11-14). Details of the trial study (n=13)
are presented followed by results which highlight some of the challenges facing extant JiTAI
study design and analysis methodology.

Self-avatars (or just avatars, for brevity) can take many forms. They can be as simple as
a picture of a user on a social network [79] or a far more complex, animated character in a
virtual world whose actions can be controlled by the user [80]. Avatars serve as facilitators of
social interaction in virtual worlds by providing bodies for users to manipulate to express
themselves and communicate with others (not unlike using one’s body to communicate
nonverbally in the real world) [81, 82]. Avatars are prominent in video games, and exercise
games (or Exergames). Examples include Wii Sports Boxing and Microsoft Kinect Adventures:
Reflex Ridge, where the user’s real-time movements are tracked and transformed to similar
movements by the avatar.

Another emerging user interface for behavior change is the "glanceable” [83], "ambient”
[84], "always-on” [85], or "peripheral” [86] displays delivered via mobile phones to improve
health behavior choices. The ubiquitous nature of these mHealth wallpapers allow individuals to
remain constantly in-tune with their physical activity goals and health information, which is
speculated to cause activation of behavioral goals and improve self-regulation of planned

behavior [87].
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Yee, Bailenson, and others have shown that the behavior of a participant in a virtual
world can be influenced by their avatar’s physical characteristics in both laboratory settings [81]
as well as in ‘real-life’ online interactions [73]. It has also been shown that changing the behavior
of a virtual representation of one’s self can be used to positively affect opinions on health and
physical activity [57]. However, these avatar effects have not been demonstrated in a mobile
context.

There is a call in the research community for evaluation of the potency of this effect
outside of immersive virtual environments [57]; this trial study explores the outer edge of the
domain in which avatars may have an effect - glanceable visualizations in which the user is very
loosely tied to their avatar. More specifically, this chapter examines the theoretical fidelity of a
system designed to test the "doppelganger effect" applied to overall physical activity within a
mobile context. The doppelganger effect, much like the aforementioned proteus effect, is a way
in which a user’s self-avatar can alter the user’s behavior. The doppelganger effect is observed
when a user is motivated to copy the actions of a self-like avatar. For instance, a running avatar
might inspire the user to be more physically active. In contrast with the proteus effect, the
doppelganger effect applies motivation through a difference in avatar action and user action,
whereas the proteus effect influences self-perception through a difference between user and
avatar appearance.

Our mAvatar application enables testing of the doppelganger effect through observation
of changes in user physical activity in response to a pervasive mobile display which shows
rudimentary user doppelgangers performing actions of varying physical activity levels. To ensure
an effective test of the concept in a mobile context, there are a variety of important design
issues to consider such as 1) how and to what degree can a user customize the avatar, 2) the

determination of an appropriate delivery mechanism to provide the intervention, 3) the
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conscious and unconscious connection between the avatar and the users, and 4) the perceived
and unperceived influence of the avatar on a person's behavior. All of these points are essential
for establishing acceptable theoretical fidelity to support a proper test of the concept within a
system.

3.1 Methods

Participants for the study were recruited using a flyer targeting parents posted on a
university campus and distributed via various university mailing lists. Approximately 40
responded, and approximately 20 scheduled to learn more about the study. None were excluded
from the study. To reduce subject-side bias on behavior, participants were told that we were
interested in using avatars to influence behavior, but were not told that we focused on physical
activity specifically.

Participants carried the phone and a FitBit electronic pedometer for at least 8 days while
they went about their everyday lives. Throughout the observation period the smartphone
displayed a glanceable, avatar on its background wallpaper. The avatar was personalized by
superimposing a photo of the participant's face onto the cartoon avatar’'s head. Each day, the
avatar adopted one of two types of behaviors: either physically “active” (e.g., walking, playing
basketball) or “sedentary” (e.g., watching television on the couch, using the computer).
Participants were not told how the avatar chose behaviors.

Physical activity measurements are continuously captured using a validated,
smartphone-based passive physical activity monitor (mMonitor [88]) as well as a Fitbit One
pedometer [89]. The phone-based activity monitor labeled every minute as one of sedentary,
light, moderate, and vigorous physical activity. The fitbit provided step-counts at a frequency of

one per minute.
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Figure 4: Histogram of day step count total.

Measurements of avatar influence were taken in the form of phone view logs. The
amount of time the avatar is displayed to the phone user was recorded by logging visibility
change events from the android operating system. These logs were tested to be a very reliable

measure of when the avatar is and is not visible to the user.
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Figure 5: Histogram of avatar view lengths.
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3.2 Data Processing and Analysis

3.2.1 Avatar-Intervention Dosage Score

Analogous to the dosage of a medication, a measure of the amount of avatar
intervention delivered is introduced as “intervention dosage”. In order to quantify dosage of
avatar intervention, a “Avatar Intervention dosage score” is introduced. The score is computed
using the amount of time the avatar is viewed. Viewing a physically active avatar results in a

positive score, and viewing of a sedentary avatar results in a negative score.
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Figure 6: Seconds of avatar intervention dosage per day.

Additional user-experience data was collected in the form of a demographic survey prior
to the monitoring period, a user-avatar relationship survey immediately following the monitoring

period, and a user-experience interview to conclude participation. Minute-level step counts for
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Fitbit were downloaded via Fitabase [90], and GPS location was collected using a free gps
logging application called GPSLogger.
3.2.2 Data Processing
3.2.2.1 Removing Outlier View Times

Outliers were identified and removed in measurement of the amount of time that the
avatar is displayed to the user. Because the software measures only the amount of time the
avatar is visible on the screen, cases where the screen is left on (such as while charging),
appear as unreasonably long view times which can dramatically skew analysis. These events
(defined as view times longer than 60 seconds) were removed from the data and replaced with
short view times (5 seconds) at the start and end of the anomalous view time.
3.2.2.2 Accounting for Every-Other-Day Events

During a concluding interview, participants were asked about their weekly schedules,
specifically focusing on physically active events which might take place Tuesday-Thursday or
MWEF. Sports team practices and PE class schedules were asked about specifically. These kinds
of events are of particular interest because they may skew the every-other-day,
within-participant study design. An analysis of participants with noted every-other-day physical
activity schedules is needed to show that this potential confound is not a cause of any observed
effect.
3.3 Results

Because the measurements in this experiment take place “in the wild”, many potential
confounds must be considered. The use of within-subjects comparison means that many of
these confounds should cancel out, but some additional data analysis techniques were used in

an attempt to guide future studies of user-avatar theory.
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3.3.1 Macro-scale ‘Intervention’ Effect on the Raw Data

In theory, the doppelganger effect should motivate participants to mirror the behavior of
the avatar. Thus participants should be more physically active on days the avatar is physically
active and more sedentary on the days the avatar is sedentary. The most straightforward test of
this assertion is to use a paired t-test on each participant’s sedentary and active day averages.
Due to various technical issues, incomplete data from two participants had to be excluded from
this analysis.

As can be seen in Figure 7, on average participants were more active on avatar-active
rather than avatar-sedentary days. A paired t-test performed on the average step count from
avatar-active versus avatar-sedentary days does not show statistical support for the hypothesis
with a p value of 0.35. The relatively small sample size of this pilot study along with the high
variability of the in-the-wild data collected made this weak effect undetectable through standard
analysis. Future comparison of effect sizes using differently styled avatars can be designed to
explore the Doppelganger effect or other avatar-user interaction theories. The effect of a more
realistic, interactive, or customized avatar can use this study as a baseline in order to
characterize these moderating variables.

Figure 10 (top) shows each day as a point with aforementioned avatar-dosage score on
the x-axis and step-count on the y-axis. A positively-sloped correlation confirms the hypothesis
that step-count should increase with active-avatar exposure and decrease with sedentary-avatar
exposure. In order to explore a possible subgrouping of participants figure 10 (bottom) shows
linear correlation attempts for all participants.

3.3.2 Micro-scale Intervention Effect
These data indicate that the physical activity of an avatar wallpaper may influence the

physical activity of its user at the day level, but the effect was too small to detect in this study
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and it is still unclear how quickly this effect may begin and fade. Through analysis of participant
physical activity after each “avatar view event’, we can begin to get a better picture of the

latency and delay involved.
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Figure 7: Stacked bar charts of active vs sedentary day step counts. Right shows average for
each participant, while left shows each individual day. Each color represents a participant.

3.3.2.1 Defining an Avatar View Event

Given a list of avatar display times, we must identify a point in time at which the avatar
view event occurs. There may be some minimum amount of view time required for an avatar to
affect its user, but in this analysis we consider any time period >0.01 second to be sufficient.

An “avatar view event” is said to occur when the avatar is displayed on the screen where
no other view event has occurred in the prior 2 minutes. This minimum time between view
events is referred to as the “recovery period”. If another view event exists in the 2 minutes

before, then this avatar viewing becomes an extension of the previous view event. Thus, only



one avatar view event can occur within a 120 seconds interval, regardless of the number of
times the screen is toggled on and off. This definition is given under the assumption that delays
and latencies of the avatar’s effect on physical activity are no smaller than 2 minutes.

Additionally, times when the avatar is displayed for more than 1 minute continuously are
considered to be unrealistic and have been removed as explained in “Removing Outlier View
Times”. This is based on the assumption that users will not find the avatar interesting enough to
warrant a continuous gaze of more than 1 minute.

In order to reduce variation in the signal following the “view event”, the moment in time
the “avatar view event” is said to occur is at the last instant that the avatar is displayed within the
particular event, whenever the participant has stopped using the phone. The “duration” of the
event is the time period prior to this during which the avatar is being viewed.

The placement of the “view event” is demonstrated using the sample data in figure 8.
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0 1 2 3 4 5 6 7 8 9 10

time [m]

Figure 8: Demonstration of the placement of “view events”. Events marked with x given binary

avatar-view data time series in scenarios a, b, c, d, and e.

1) (a) “glance” - wallpaper is viewed between 1 second and 60 seconds in length. This
represents cases where the phone has been glanced at once and then put away. Use-cases
include: checking the time, looking at the phone only for the avatar, and checking for
notifications.

2) (b) “usage” - wallpaper viewed multiple times with insufficient time between them, thus

they are lumped into one event. This event represents a typical phone usage session during
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which the user may change between apps or screens, seeing the avatar background briefly
during the transition.

3) (c) “short fault” - wallpaper is viewed for less than minimum view time, no event.

4) (d) “long fault” - unrealistically long view time (red) is replaced with shorter view times
at beginning and end.

5) (e) “long usage” - nearly continuous usage of the phone over an extended period of
time is observed as many intermittent avatar views; a view event is placed at the end of the
usage.

One additional caveat of note: the end of a view event may occur at any point in time,
but fitbit step counts begin only at the start of each minute. View event endings are thus
“snapped”(rounded) to the nearest minute, meaning that there is up to 30 seconds of variation in
the alignment of view events.
3.3.2.2 The Dynamics of Post-Avatar-View Step-Count

In an attempt to visualize the dynamics of step count following an avatar view event,
figure 11 shows all participants’ step counts following all 772 active-avatar (red) and 784
sedentary-avatar (blue) view events. Also shown is the average step count in the minutes
following the event. In this view, active-avatar and sedentary-avatar effects appear very similar.
3.3.3 Subgroup Analysis

In order to better explore the differences between participants with positively and
negatively linear sloped correlations between avatar dosage score and step-count (as separated
in figure 10 bottom-left and bottom-right), the difference between average steps following active
and sedentary view events was integrated over the 180 minutes following the event to provide a
simple score which may indicate the degree to which the avatar’s physical activity inspired

participant physical activity. These scores were then compared to several survey metrics which
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we believed may have some impact on the potency or direction of avatar influence. A summary
of these results is shown in figure 9. Since no strong correlation are apparent, we conclude that
these metrics are insufficient to explain the between-subjects differences in the data. Through
inspection of participant interviews, a potential moderating variable was identified mid-study.
Because participants were not told how the avatar would choose behaviors, participants were
open to interpret the avatars’ behavioral choices in two ways: 1) the avatar mirrors their own
behavior, or 2) the avatar is suggesting behaviors for the participant. Some connection between
participant behavior and the behavior of the avatar was expected by nearly all participants, but
reported expectations were split between these two interpretations. This potential moderator
further complicates analysis because each interpretation is expected to influence physical
activity in opposite ways. If the participant believes the avatar is mirroring their own behavior,
then avatar-sedentary behavior may cause increased physical activity due to the participants’
heightened awareness of their own behavior. In this way the avatar could act as a simple
biofeedback mechanism. In contrast, the second interpretation predicts participant physical

activity behavior to correlate positively with that of the avatar as originally hypothesized.

A) Avatar Susceptibility vs B) Perceived avatar influence C) Perceived avatar control vs
post-event steps VS post-event steps post-event steps
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Figure 9: Average difference (active-sedentary view event) in participant steps. 180m following
avatar view event vs potentially moderating variables measured by survey
(A) avatar susceptibility score, B) perceived avatar influence, C) perceived control over avatar

behavior)
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In conclusion, the mAvatar trial study created an interesting dataset with unique data
analysis challenges. Although support for the doppelganger effect in a mobile context could not
be shown using standard analysis techniques, a more in-depth look at the minutes following

intervention delivery may lead to a better understanding of the avatar-effects this study set out

to explore.
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Figure 10: Scatterplot of all participants daily step counts vs avatar exposure score. Top shows
correlation across all data. Bottom shows correlations for each participant, split into

positively-sloped (left) and negatively-sloped (right).
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Figure 11: Comparison of step-counts in 60 min following avatar view events. Active shown as

red + and sedentary as blue x. Individual values marked as well as average lines shown.
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CHAPTER 4: INTERVENTION-VIZ

Though the potential applications of JiTAls are numerous, there remain significant
challenges to be overcome by the research community before the potential of JiTAls can be
unlocked. As shown in the previous chapter, methods for evaluating the efficacy of a JiTAI are
not yet established and methods for utilizing computational models of human behavior are even
less developed [91]. Existing behavior models appear inadequate to inform state-of-the-art
intervention development [50]. Conventional methods of analysis do not offer the level of detalil
needed to explore the implicit dynamics of JiTAls, and behavioral theorists need methods and
tools to help understand the dynamics of behavioral responses to a stimulus. Applicable
methods of intervention analysis and data visualization have been slow to reach behavioral
researchers, dramatically limiting their ability to develop of state-of-the-art behavioral theories to
address these shortcomings. Without addressing these open questions, models cannot be used
to effectively predict or explain behavior in practice, the dynamical aspects of human behavior
will remain ignored, and applications will remain artificially limited by the unnecessary
complexity of decision rules which are used to implicitly codify models of behavior in existing
proof-of-concept systems.

In this chapter methods for analysis of the minute-level dynamical response to a
behavioral intervention are outlined. The impulse response of a physical activity intervention is
explored and data visualizations which provide insight into the dynamics of health-related events
are demonstrated. We evaluate the visualizations from a JiTAI developer’s perspective using

three datasets, focusing on what research questions are addressed by each visualization, where
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there is uncertainty in the meaning of the visualizations, and the strengths and weaknesses of
each approach. These methods, when combined with a computational modeling approach to
understanding human behavior may enable behavioral scientists to formulate more accurate
and more application-ready models, leading to more effective behavioral interventions.

4.1 Related Work

Much work exists on both behavioral intervention analysis and event-based time series
visualization. However, little existing work addresses the dynamics of a numerical variable's
response to a behavioral intervention event.

Event-based analysis is an important topic for business applications as well as in the
health domain. Many of the methods applied to analyze consumer behavior can be applied to
the health domain. "Lifelines" [92] allow for the exploration of health events in a series for one
individual, and new research in event sequence analysis [93], including analysis of event
patterns [94, 95, 96] and the relation of multiple symptoms [97], helps researchers examine
outcomes on a "macro-scale" across many participants by aggregating records into a single
view. Similarly, the problem of identifying patterns at multiple time scales has been partially
addressed through clustering of time series [98], and methods for exploring the "paths"
traversed by many individuals between many event types and statistical analyses to highlight
relationships between events has recently been established [99]. These methods provide useful
abstraction at the population level and allow researchers to explore correlations and state
transitions of population subgroups, but these methods are most effective for discrete-state
measures. For measures with many states or continuous variables (such as many behavioral
measures in JiTAI applications), it becomes more difficult to provide statistical support for a

particular state-transition hypothesis. The methods presented in this article fill this gap in the
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literature and focus specifically on visualization of the dynamical behavior of continuous
variables surrounding a particular event or aggregation of events.
4.2 Example Application: Physical Activity

As an example application to demonstrate the strengths of the proposed visual analytics
two empirical datasets will be used, each with a minute-level metric of physical activity and
intervention events delivered throughout a period of several days. In both studies interventions
were delivered with the intent of increasing participants’ physical activity, and responses to
interventions varied between participants and delivery contexts. In addition to these data, a
control dataset with known intervention responses is included for comparison.

These datasets provide a good test bed for application of the methods presented here.
The interventions in these datasets are all expected to affect the level of the target behavior, but
the dynamics of the response may differ greatly. The differences in the chosen datasets serve to
highlight the strengths and weaknesses of methodologies outlined. The n-of-one control dataset
with a strong intervention acts a baseline with predetermined response characteristics which
should be easily identified by our analysis. The KNOWME data represents a JiTAl with a
study-wide effect and multiple behavioral measures. Lastly, the mAvatar study data shows less
prominent effects study wide, but has potentially interesting subgroups for exploration.
Additionally the mAvatar data is unique in that it contains two interventions targeting the same

theory, but influencing in opposing directions. A summary of each dataset is shown in Table 2.

Table 2: Summary of datasets analyzed.

Data Set n Length (days) Intervention measures
control 1 14 N/A Step count
KNOWME | 10 3 SMS Message HR, Accelerometry
mAvatar 11 8+ Glanceable avatar display | Step count
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4.2.1 Control Dataset

The control dataset is the result of manual recording of one participant undergoing an
imaginary, very potent intervention. The participant remained sedentary for an interval ranging
from 5 to 120 minutes. Then the participant was physically active for a period of no less than 5
minutes. Physical activity was recorded as a step count using a Fitbit One pedometer at a
frequency of 1Hz. Thus, the mock intervention is delivered with 100% efficacy and should
therefore be easily identified in the data.
4.2.2 KNOWME Study

In this study ten teenagers (mean age 16.3 +/- 1.7 years) were asked to carry a
smartphone and wear an accelerometer and a heart rate monitor for 3 days. Physical activity
was measured continuously and was monitored in real time using the KNOWME system [100].
When a participant had been continuously sedentary for two hours, a personalized SMS text
message was sent to their phone. Each text message is manually crafted to prompt the
participant to be more physically active. The text message prompt is expected to cause an
increase in PA within minutes to hours after the intervention. This physical activity increase
should be detectable in both the accelerometer data as well as the heart-rate data, with the
heart-rate data lagging only very slightly behind accelerometer.
4.2.3 mAvatar Study

An alternating treatment design is used to examine participant behavior over a period of
8+ days in order to test the effect size of an avatar-based live wallpaper deployed on Android
phones [71]. Participants (n=11) aged 11-14 were exposed to a simple, animated cartoon avatar
on their mobile device showing alternating levels of PA. Each day the avatar would either be
active (playing basketball, running, bicycling) or sedentary (watching TV, on a computer, or

playing video games). Fitbit One electronic pedometers were used to estimate participant levels
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of physical activity via step count. Depending on the participant’s interpretation of the avatar
display, one of two effects are expected:

1) The participant believes the avatar is reflecting their own behavior, increasing their
awareness of sedentary behavior, causing the avatar to act as a biofeedback mechanism, and
boosting their PA.

2) the participant believes the avatar is suggesting how they should behave, possibly
inducing the Doppelganger Effect [101], and raising their physical activity to better match the
avatar.

For participants in subgroup one a negative correlation between avatar and participant
PA is expected. Conversely, for condition two a positive correlation between avatar and
participant PA is expected. The dynamics of these two effects are uncertain, but it is
hypothesized that effect one has a comparatively shorter delay and decay than effect two, which
may be more cumulative in nature.

4.3 Methods
4.3.1 Highlighting Event Dynamics

Existing “macro-scale” methods can determine if an intervention has a significant
influence over our target behavior, but they do not give much insight into how the event has an
effect over time. In order to explore the dynamical response of an intervention, the shape of the
input signal must be defined. In most cases an intervention can be represented as an impulse
signal. Using this representation the impulse response can be calculated as the
cross-correlation between the intervention signal and the behavioral measure. Figure 12 shows
the result of cross-correlation between the intervention input and the heart rate signal across all

participants in the KNOWME study.
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Figure 12: Cross-correlation function showing study-wide heart rate response. Intervention from

the KNOWME dataset would be at 0 minutes of lag.

The dynamics surrounding a particular event can also be shown using a raw time series.
The instance or span of the event is marked on the time-axis and the value of the behavioral
measure (physical activity in this case) is encoded in the height at each point in time.

Figure 13 shows the case where an event instantaneously causes permanent change in
the target behavior, but in the many cases the intervention will have a temporary effect on the
target behavior and will have some delay before setting in.

These intervention response dynamics shown in figure 14 are critically important for
JiTAI developers. Each participant's record can be inspected individually, and events of interest
can be marked. Since this examination is taking place over many series, it is prudent to utilize
sparklines [103] or horizongraphs [104] to allow for examination of many series simultaneously.
4.3.2 Event-time Alignment

Plotting individual events one-by-one allows a researcher to explore the idiographic
details of that particular event, but in order to draw out generalizations across groups of events

(be it by participant, context, or another selector) events must be plotted relative to the time of
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the event, rather than the start of the study. By time-shifting the data view so that each
intervention event falls at t=0 in a time-series, we can view many events on a common time

frame.
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Figure 13: Theoretical responses to intervention.

Adapted from Glass, Willson, & Gottman [26].
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Figure 14: Level-change dynamic effects.

Adapted from Glass, Willson & Gottman [102].
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Figures 13 and 14 give us sense of what an intervention should look like, but in reality
individual variations in context completely mask the often small effect of an intervention (see
figure 15). To a researcher looking at the plot of individual event responses in figure 15, it might
seem that only the intervention plotted in purple was an effective intervention, acting with a
delay of approximately 30m, and decaying rapidly 120m after the event. However, the control
dataset includes interventions that were 100% effective by design, acting with minimal delay and
beginning decay at 5m. Since the data has been time-shifted to place the time of event at t=0,
an average across all series will reveal nomothetic trends across all events. When looking at all
events individually, it is difficult to spot any pattern in the series. When averaging across all
event responses, however, a response is evident, and the purple series is exposed as an outlier
rather than the only instance of successful intervention.

This approach can be taken for all events in one participant's time series to characterize
that participant, or can be applied across participants to characterize a more generalized
response to the intervention. In fact, a subset of groups can even be selected and analyzed in
order to enable advanced subgroup analysis.

4.3.3 Gauge Effect Size

It is difficult to judge if a sudden increase of, for example, 10 steps/min is statistically
relevant for a given participant in a particular context. To help address this, we include an
additional y-axis showing the mean and standard deviation of the series to give an increased
sense of the significance of this effect relative to data which may be out of frame. In addition to
the nearly immediate response in figure 16, a longer-lasting effect reaching out to approximately
180m after the event seems to be boosting step count, though the all-events view in figure 15 as
well as the stacked-events display reveals that there are two outlier events which may be the

sole cause.

41



120 . T T T T

100 .

step count
3

20 H ‘
‘ l f |II.
’t | *
'. \ ~ *ﬁl IL
0 " ’ .ftf.i\'* '“’kt A &L\ de [y
=300 —200 -100
minutes since event
Figure 15: Aligned event responses surrounding the control intervention.
4.3.4 Stacking

To address the shortcomings of using averages, we show all individual events stacked
on a single graph. This aggregation method yields the same shape, and the y-axis can be easily
normalized to match our average series by dividing by the number of events. While still evening
out random contextual influences, this visual also provides indication that the average result is

not due to one outlier event, enables easy spotting of missing data or faulty sensors, and gives
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some indication of the number of events considered. For an n-of-one dataset such as the control
dataset, events can be graphed with a unique color.

In figure 16, event colors are chosen based on the order in which they were observed.
This encoding scheme may in some cases reveal habituation to an intervention if the later colors
show decreasing effect magnitude. Color mapping of events can also be used to visually group

events based on time of day, location of the event, or participant.
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Figure 16: Aggregated step counts surrounding control intervention events. Shows aggregate

event response dynamics and individual variations across events.

For a plot of many participants, encoding participant in color allows the visual to display
both event-level and event-group-level detail in addition to the overarching response. Figure 17
shows the difference between a plot of various average response lines and the stacked area
plot of figure 16 using the KNOWME dataset. The thin lines in figure 17 represent the response
of each participant to the event averaged across all events for that participant. The thick gray
line shows the average across all participants' average series. The stacked bars in figure 18 are
colored by participant ID, and each bar represents one unique event - stacked in order of event

incidence. This allows researchers to search for both participant outliers within the set as well as
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event outliers within each participant. For instance, it is clear that the participant shown in purple
responded to the intervention, but we can also see that this effect is largely the result of a single
event within the participant's series. This reveals that intervention was effective on average,
while also showing that there exists some variable within participants moderating the efficacy of

the intervention.
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Figure 17: Average heart rate for each participant surrounding an intervention event. From the

KNOWME dataset (smoothed over 15m rolling window).
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Figure 18: Stacked bar chart showing accelerometry for each participant. Using intervention

events from the KNOWME dataset.

Figures 17 and 18 show an increase in physical activity following the delivery of a
physical-activity-suggesting sms message. Though the behavioral measure differs from that
used in the control dataset and figure 15, a comparison of the y-values in terms of standard
deviation also reveals that this effect is less extreme than what we observe in the control
intervention. The deviation from the mean as measured relative to the standard deviation gives
a sense of how unlikely the signal is to be a random artifact, but detailed methods for evaluating
the statistical likelihood of observing a particular shape are not covered here. For additional

comparison to the control data, also consider the stackplot shown in figure 19. Though the

45



highlighted windows are relatively small (to highlight the intervention response), much wider

context around the event can be plotted, such as that shown in figure 16.
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Figure 19: Aggregation of step counts showing dramatic response to the control intervention.

This same analysis is applied to figure 20, but with another variable in the KNOWME
dataset, heart rate. Both the accelerometry counts and heart rate signals should act as proxies
of physical activity. Note however, the different dynamics of each variable's response.

Accelerometry counts are more directly tied to behavior - which can be erratic and non-linear,
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thus the dynamics observed are more volatile, while heart rate acts as smoothed function of

accelerometry, responding less quickly and decaying more slowly than accelerometry data.

10 F Y aame . e =100
mean |- : -
o b .}
2
o PR e LT E e
o B H e A D L T H A H T :
5o AR A e A A 180
i s
&
0 3
™
i
<
M
5]
T
40 S
o
@
=
[1]
20
0
-20 -10 0 10 20 30 40

Minutes Since Event

Figure 20: Heart rate data aggregated across KNOWME patrticipants.

Shows a mild response to an SMS intervention.

The line graph allows for characterization of unique individuals, but the stackplot better
highlights the overall effect and also shows the number of events considered.
4.3.5 Characterize Intervention Delivery Context

In some cases introducing a “control event” against which to compare the experimental

event can help isolate the intervention from the context in which it is delivered. For instance, an
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intervention delivered on a mobile device is always delivered within the context of phone
interaction. That is, the user is always using the phone when the intervention is delivered. It is
possible that "using the phone" has it's own unique effect on the behavioral measure that may
confound a comparison done against a “not-using-the-phone” baseline. Thus, using "phone use"
events as a baseline against which to compare "phone use and intervention delivery"
strengthens the chance that the observed effect is a result of the intervention itself and not the
result of frequently concurrent contextual forces. For example, by looking at all times the phone
was viewed in the mAvatar dataset, the average context of phone use can be characterized.

In figure 21, we see a notable increase in steps leading up to phone usage. It is possible
that this increase - though it preempts avatar viewing - is indeed caused by the avatar. Consider,
for instance, the unanimously reported case of participants viewing the phone with the explicit
purpose of seeing how the avatar would be affected by their behavior. Thus a peak in physical
activity may indeed be driven by the desire to illicit a response from the avatar, which is viewed
only a few minutes later. This interpretation is quite speculative and other features of figure 21
are not so easily explained. It is clear, however, that this is not a flat baseline that we may
expect to find on average, and exploration of dynamics surrounding the active and sedentary
avatar viewings ought to subtract this baseline to account for the overlapping of this
context-driven (rather than event-driven) signal.

4.3.6 Comparing Event Types

Aforementioned methods used to provide a contextual baseline of comparison for events
can also be applied to allow for a comparison between two event types. By treating one event
as the baseline, differences between the events can be visualized. Using this paradigm, nearly
equivalent event responses will have a near-zero difference. Positively-valued areas of the

resulting chart indicate times when the "experimental event" had a greater positive effect on the
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target measure, or, conversely, that the "control event" had a greater negative effect on the

target measure.
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Figure 21: Stackplot of step count aggregates from the mAvatar dataset.
Shows 30 minutes surrounding 1673 phone-view events

(individual event segmentation removed due to large number of events).

The mAvatar dataset contains two types of intervention which may be interesting to
compare: 1) active-avatar viewing, 2) sedentary-avatar viewing. In this case, the two event types

are theoretically opposite in effect, meaning that the sedentary-avatar effect should resemble a
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mirrored version of the active-avatar effect. Thus, the difference should accentuate the

intervention's effect signature and better isolate the behavioral response from noisy data.
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Figure 22: Active-event series average minus sedentary-event series average. Smoothed over a

15m rolling window. (average across participants shown in bold)
Even with two oppositely-polarized events, however, figure fails to show the dramatic

effect a researcher might hope for. In this case, study investigators attribute the apparent lack of

effect to an ambiguity in study design which led to the two opposing conditions mentioned
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previously, and figure 21 may indeed suggest this subgrouping within the data in the individual
participant series.
4.4 Conclusion

The presented visualization methods reveal important insights into the intervention
dynamics recorded in these datasets. Though this is an important first step towards better
intervention efficacy analysis, there remain many open questions facing JiTAl developers. Better
application of statistical measures to evaluate the findings shown here are needed to establish
measures of significance for an observed effect response signature, and Predictive models
which take into account the dynamics of intervention effect are needed to enable these
statistical methods. However, the presented visualization methods provide the important “first
look” at JiTAlI data and the corresponding python scripts published publically at
github.com/PIELab/interventionViz lay down a foundation upon which new modeling and

analysis efforts can build.
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CHAPTER 5: COMPUTATIONAL HUMAN BEHAVIOR MODELS?

This chapter outlines open challenges facing the development of JiTAls and discusses
the use of modeling as a common ground between behavioral scientists designing interventions
and software engineers building applications. We propose that Computational Human Behavior
Modeling (CHBM) has the potential to 1) help create better behavioral theories, 2) enable
real-time ideographic intervention optimization, and 3) facilitate more robust data analysis
techniques. First, a small set of definitions are presented to clarify ambiguities and mismatches
in terminology between these two areas. Next, existing modeling concepts are used to formalize
a modeling paradigm designed to fit the needs JiTAI development methodology. Last, potential
benefits and open challenges of this modeling paradigm are highlighted through examination of
the model-development methodology, run-time user modeling, and model-based data analysis.

Researchers theorize that an intervention which can be tailored based on the user and
context may be an elegant solution to empower self-management of unhealthy behaviors like
substance abuse, overeating, sedentary behavior, and more [42]. These persuasive
technologies aim to utilize contextual information to deliver personalized interventions at the
optimal moment in time. Real-time monitoring of data to identify states of special vulnerability to
poor behavioral decisions or receptivity to intervention at any given moment is possible [44], but

"a major gap exists between the technological capacity to deliver JITAls and existing health

2 This chapter has been adapted from an article published and presented at the International
Conference on Persuasive Technology. Murray, T., Hekler, E., Spruijt-Metz, D., Rivera, D. E., & Raij, A.
(2016, April). Formalization of Computational Human Behavior Models for Contextual Persuasive
Technology. In International Conference on Persuasive Technology (pp. 150-161). Springer International
Publishing. Permission to reproduce here is included in Appendix A.
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behavior models." [42] Proof-of-concept applications have demonstrated the ability to adapt
interventions to users [45, 46] and context [47, 48], but using current methods the complexity of
the behavioral model underlying a JiTAl application grows exponentially as the complexity of the
intervention design increases. Current methods for conceptualizing the human system take a
piece-wise, descriptive approach, examining a phenomenon in detail, but often overlooking how
the model fits into the bigger picture. Ultimately these conflicts arise because the needs of a
persuasive technology are very different from the needs of extant behavioral research. While the
latter places emphasis on the study of the human system's intricacies, the former needs a
model which provides generalized insight and specific numerical predictions. Behavioral
theories traditionally focus on nomothetic and static insights that do not offer the granularity and
specificity to support the full potential of JiTAls [50]. These methods are sufficient for analysis of
traits which do not change much over days or weeks, but data collection and intervention
delivery timing is now available to the microsecond for physiological data and at the at the
minute-level for behavioral features and psychological constructs.

The current development process for JiTAl-like persuasive technologies requires close
collaboration between behavioral scientists and application developers as they struggle to
code-ify the model from extant behavioral theories for each individual experiment. The models
used by a programmer to describe a user and the models used by behavioral scientists to
describe a participant have certain key differences which can complicate the process of JiTAI
design. In this chapter we present a hybridization of the two modeling paradigms designed to
emphasize the strengths of each approach. As a part of this set of interdisciplinary terms, we
introduce the concept of a Computational Human Behavior Model (CHBM) to describe this new
class of models which aim to satisfy the demands of persuasive technology. Following

definitions, we propose that by formalizing the CHBM underlying persuasive applications, it will
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be possible to create better behavioral theories, enable real-time ideographic optimization,
facilitate more robust data analysis, and reduce application development time. In this section we
present a look at how the concept of a CHBM would be applied to address open issues holding
back JiTAls and we highlight the remaining issues which must be addressed to make
Just-in-Time Adaptive Interventions a reality.

5.1 Selected Definitions

This section presents definitions and design considerations relevant to human-behavior
modeling from a theory-agnostic standpoint so that different modeling paradigms can be
described under a common foundation. This set of definitions draws from both the area of HCI
user-modeling and the extant paradigms of human behavior modeling in behavioral science in
an attempt to synthesize a pragmatic language for use in the development of persuasive
technology by behavioral scientists and application developers alike.

“Treatments” are defined by M.C. Kaptein as the set of messages or feedback a user
receives from a persuasive application [105]. The term treatments seems synonymous with
interventions in usage, but a single treatment should be used to unambiguously represent a
single instance of user-interaction, whereas a single intervention may represent a set of
interactions given as a dose.

“Just-in-Time (JiT)” is a cross-disciplinary concept defined in the context of behavioral
interactions by Nahum-Shani et al. as "the effective provision of timely support, operationalized
by offering the type of support needed, precisely when needed, in a way that minimizes waste
(i.e., defined as anything that does not benefit the person) and accommodates the real-life
setting in which support is needed." [42] Thus, for an intervention to be considered Just-in-Time
(JiT), it must attempt to deliver treatment immediately before or after an event associated with

the target behavior. For example, a smoking cessation JiT intervention may deliver an
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intervention in response to increased craving. It is important to note here that the term “event” is
used to represent any exact set of circumstances over any predefined length of time. The
targeted event can therefore represent not only behavioral events (such as a jog, smoking a
cigarette, commuting to work), but also an interval of availability, a “meaningful moment”, or any
“optimal time” defined by a match between a set of observed datapoints and a set of datapoints
which define the event archetype.

“Adaptive” interventions must utilize dynamic (time-varying) “information from the person
(e.g., changes in psychological distress, response to an intervention, intervention adherence)
[...] to make intervention decisions repeatedly in the course of the intervention (e.g., changing
the type, dosage, or timing of intervention delivery).” [42] An adaptive intervention is one that
responds in real-time to the changing needs of the participant by tailoring the treatment itself
based on situational context or the recent behavioral history of a user. For example, a weight
loss trial might attempt to remove soda from a participant's diet and then move on to the next
goal if the intervention was successful. Similarly, consider the use of step goals to increase
physical activity for an obese individual, the goals may start off at a realistic level (1000
steps/day) and then build up slowly as the individual's ability progresses.

“Individualization” is defined by Nahum-Shani et al. as the “use of [static] information
from the individual to make decisions about when, where and how to intervene.” [42] Thus, an
intervention is individualized if “relatively stable information from the person (e.g., gender,
baseline severity of symptoms) is used to make intervention-related decisions (e.g., to offer
intervention package A or B)” [42] For example, a stress-relief intervention regimen may utilize
relaxing music treatment based on the participant's favorite songs at study initialization, or a

participant's favorite color may be used as the basis for the user interface color palette.
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5.2 Computational Human Behavior Models

The following specification will allow for the formal description of a CHBM, providing a
standard approach to describing, designing, and visualizing human behavior models for
persuasive applications. A Computational Human Behavior Model (CHBM) is defined here as a
mathematical, explicit model which describes how context is transformed into a behavioral
outcome through the internal state of the human system. In summary, a Computational Human
Behavior Model (CHBM) should have 1) a set of context, state, and behavior variables, 2) a set
of computations which define behavior variables as a function of state which is itself a function
of context, 3) a logical abstraction which allows researchers to internalize the model's behavior
such that they will be better able to estimate control of the human system in general, and 4)
guidelines regarding the applicable population and time-scale of the CHBM. The following
section details each of these CHBM components, followed by a methodology which makes use
of a graph representation to create and describe a particular CHBM.

5.2.1 Characteristics of a CHBM
5.2.1.1 User Features: Context, State, Behavior

A distinguishing feature of a CHBM is the separation of the participant definition into
environmental context, internal state, and behavior variables. In reality, an individual represents
an inseparable component within the larger environment, but this simplification segments out
the human system for definition.

Dey et al performed an extensive literature search to define an agent's context as: “any
information that can be used to characterize the situation of entities (i.e., whether a person,
place, or object) that are considered relevant to the interaction between a user and an
application, including the user and the application themselves. Context is typically the location,

identity, and state of people, groups, and computational and physical objects.” [106] In most
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cases, however, it is sufficient to define context as a set of selected information from the
environment available for inflow into the human system, but contextual information from the
environment may be summarized and represented in countless ways. In reality, consider context
to be everything that is observed by the senses. Some of this information will alter the internal
state of the human system, but some may not. When building a model based on theory alone,
modelers should make the selection and summary of contextual constructs to be as
generalizable, extensible, and reusable as possible. When utilizing a model to simulate a
particular experiment, efforts to connect available data to that which is available during the
experiment may be needed, and contextual information not available empirically may need to be
simulated. The environmental context influences the human system, which has an internal state
represented by a set of internal state variables. In reality, internal state includes all information
stored in the chemical and physical arrangement of our bodies. In order to make the model
tractable, the mass of information is summarized into a set of meaningful constructs. Information
flowing into a CHBM comes from the environment around an individual (the context) as an
inflow which is independent of the individual's state in this instant. Similarly, information flowing
out of a CHBM (as behaviors) represents actions the individual is taking to impact the
environment.

As an example, consider a model of user physical activity level wherein an intervention
acts to suggest physical activity as measured by a pedometer. In this example context might
include a signal of intervention delivery and the location of the subject. The internal state could
be represented by three constructs: 1) calling to exercise - a quickly decaying call to act if the
subject is motivated and able (this is the construct targeted by the intervention), 2) physical

health of the subject, 3) ability to exercise (based on location and current physical health of
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subject). Behavior, measured as a step count, is then determined through some function of
calling to exercise and ability to exercise.
5.2.1.2 Relationships Between User Features

The relationships between context, state, and behavior variables in a CHBM must be
defined computationally. The functional form of these computations is not constrained in this
definition, theoretically allowing for the representation of any inter-variate relationship. There are
numerous benefits to keeping the functional form of these relationships simple and homogenous
across variables. Last, a simple formulation is more easily understood, allowing for a
straightforward interpretation and abstraction of the model behavior.
5.2.1.3 Heuristic Interpretation

Statistical models trained on data do qualify as CHBMs in that they can define the
relationships between state and context, but typically do not incorporate a logical abstraction of
cognition and instead treat the internal state as a “black box”. This abstraction is essential when
considering the process of JiTAI design, since the search-space available to a JiTAI designer
can only be approached through heuristics guided by an understanding of how the human
system will generally behave under given conditions. Though mathematical equations
themselves reveal the nature of the system, naming and describing the interpretation of specific
constructs or coefficients which play pivotal roles in the model can aid in the process of
internalizing model behavior.
5.2.1.4 Model Metadata

While a CHBM should strive to be as broadly applicable as possible, this inevitably
comes at the cost of increased complexity which can make the CHBM's nomothetic
abstraction(s) intractable; there is a balance to be struck between a CHBM's inclusivity and the

clarity of the abstraction. For this reason, it may be important to specify the circumstances in
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which a given model is valid. It may be useful to craft a highly detailed model of a particular
population, but the added complexity in this model may not justify its use in a more general
population. This is not analogous to the issue of overfitting in machine learning, as the model
can remain accurate across the population; the primary reason for limiting the number of
variables or the functional complexity of relationships is to preserve the heuristic understanding
of the model.

5.2.2 Creating a CHBM

A network graph is an effective abstraction to describe the relationships (represented by
arrows or “edges”) between variables (represented by the graph's "nodes") in a CHBM. In this
case a directed graph wherein edge arrows represent the flow of information between nodes is
used. Thus, a directed graph edge from node A to node B indicates that information flows from
node A into node B. This relation can be read as "A influences B", "A informs B", or similar. This
choice of notation is in agreement with graphs used in information theory, communications
models, and behavioral science. In contrast, some graphing paradigms (such as probabilistic
graphical models and software design) prefer to use notation wherein an edge is used to
represent dependency.

While the network graph shows the connectivity of a model, it fails to indicate the
meaning of each connection. In the majority of existing applications, the mathematical form of
the relationship is implied or else it is neglected completely. For instance, path diagrams from
the behavioral sciences frequently denote causal dependence and do not specify the functional
form of the causal relationship. Adding even further to the confusion is the notion that these
graphs are often developed using different statistical analyses which may make other

assumptions about the functional definition of inter-variate dependency. The most common
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analyses assess linear relationships between variables, and thus it is perhaps reasonable to
assume that this is the intention of most authors.
Assuming this is the case we can return to our simplistic example in Graph 1 and

interpret the implied relationship as:

B(t) = coef fapA(t) + consty,

In this formulation €€ fab represents the correlation coefficient which relates A to B, and
consty represents a scalar constant. For nodes with multiple inflow edges, such as node B in

the following graph:

A=>B<=C=>D

Continuing with our assumption that node interrelations act as linear sums, the resulting

formulation is simply a sum of the inflows:

B(t) = coef furA(t) + coef fuC(t) + consty,

Using this formulation, the general form of the CHBM is expressed via the network graph alone.
The general solution of an CHBM does not require definition of the constants, but a simulation
cannot be run until some numerical value is assumed. These constants often have theoretical
significance in that they often have meaningful influence upon system behavior.
Scaling-coefficients, for instance allow for relative weighting of each inflow. Similarly, the

coefficients of a dynamical equation define how quickly variables react to a change "upstream".
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This linear, homogeneous-graph representation is useful, but also very limited. One
important feature which this formulation does not take into account is the dynamics of the
relationship. For instance, the above linear model assumes that there is no delay between
variables. This assumption is fine for some applications, but this is a very poor assumption for
human behavior models.

Differential equations based on a fluid-flow analogy can be used to describe the
relationship between variables as described by Dong et al. [107]. Using the differential

formulation our equation for B in Graph 1 becomes:

dB
B(t) = coef fapA(t — O4p) — Ty + const

Just as before, our general model is not expressed entirely through the graph, and an
ideographic example is specified by providing table of coefficient values. Our table is now quite
a bit larger, but these coefficients have meaningful definitions which relate to our theory. While
this formulation offers a huge improvement over the linear formulation, we can still imagine
relationships which it cannot express.

It should be noted at this point that although the linear formulation is too simple to
express the dynamics of the differential formulation, the differential formulation is capable of
expressing linear relationships. This is accomplished by setting coefficients of dynamical
components to zero. One might think, then, that there is some general formula which could
express any functional form, and that this form should be used to express the relationships
between variables in all CHBM graphs. While such formulations do exist (such as Taylor or
Fourier series approximations or even ANN-based relations), this usage tends to make the
model difficult to understand and to simulate with. Linear and differential formulations are in
such widespread use because of the relative ease with which we can understand and solve

them. Additionally, the table of coefficients needed to express an idiographic case of the model
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quickly becomes prohibitively large, and the effect of each coefficient on the outcome is not
intuitively meaningful.

Let us now consider the case where a graph-wide assumption is not made. That is, we
will specify the functional form of each node individually so that each edge on the graph may be
linear in form while another may be differential. This has the benefit of allowing for both complex
relationships between variables as well as simplistic ones. In this way one could craft a model in
which two variables are linearly related and a third is dependent on the variance of another
variable (a particularly odd formulation, but one which is relevant to behavioral theory).
Unfortunately, this approach also means that a table of formulations must now be included with
our graph to show the meaning of each edge in the graph. Consider for example table 3 below

to describe the relations in Graph 2.

Table 3: Functional form at each node.

node formulation

B coef faA(t) + coef fuC(t) 4+ consty
dD

D coef feaC(t — Ocq) — i + consty

If a fixed number of functional forms is adhered to, the graph can be made to visually represent
these functional forms through the use of different node icon shapes. This approach quickly
begins to resemble applications which use flow-based programming. Indeed, they are quite
similar in their approach, and the specification of a CHBM is quite similar to the writing of a
program.

In conclusion, we propose that an CHBM should be specified using the following rules 1)

use a graph-wide formula assumption if possible, else specify formulations for each node
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individually, 2) when choosing a formulation, consistency between nodes is most important, 3)
when choosing a formulation, simplicity and clarity is second only to consistency.
5.3 Benefits of CHBM-enabled JiTAls

This section discusses the utility of a CHBM throughout the lifecycle of a JiTAI
application. Hypothetical situations are posed to highlight the potential value of CHBM use in the
JiTAl development process and show open challenges through establishment of a target user
group model, application design, application implementation, data analysis, model
personalization, and model iteration.
5.3.1 A Priori CHBMs

Prior to development of a JiTAI, a mental model of the target user group is established.
This a priori model represents the researcher's understanding of the user group, and the design
of the intervention utilizes the model in order to predict user actions. This level of detail to which
this model is documented varies greatly between applications, and in some cases the causal
descriptive model has little grounding in existing behavioral theory [108]. Nevertheless, a vague
description of expected user behaviors and interactions with the persuasive technology still
represents a user model. Existing JiTAl-like applications may not have a CHBM, but they always
(sometimes informally) imply a CHBM. This section highlights the benefits of defining a CHBM
explicitly, rather than relying on implicit behavioral theory.
5.3.1.1 Model Building

When model-building for a JiTAI, the planned system and underlying model of human
behavior becomes very complicated, and user responses may be difficult to predict through
thought experiments. Without a concrete framework to describe the model, user behavior
becomes oversimplified, giving an even less accurate picture of the complex human system.

When a model is under-developed, the application development process will open unaddressed
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guestions and simple assumptions will be made. For instance, delivery of a treatment may be
limited to the waking hours or to the weekdays, but this will not be reflected in the described
user model. The mismatch between the documented theoretical model and the actually
implemented model further muddle the process of study replication and analysis.

In addition to those assumptions knowingly made by application developers, causal
descriptive modeling often contains implicit assumptions which are easily overlooked. For
instance, the delay between a cause and effect is frequently neglected, that is: how quickly does
a participant's behavior respond to an treatment? The process of defining a more detailed a
priori model itself can lead to new insights and research questions by eliminating these
oversights and forcing critical thinking on the assumptions being made.
5.3.1.2 Intervention Design

When designing intervention options for a JiTAI application, researchers will consider
how a treatment influences the participant in the context of the chosen user model. When using
a CHBM, this means quantifying the treatment's effect on user context. For instance, consider
an intervention which provides information about the health repercussions of sedentary
behavior. Assuming our CHBM uses an adaptation of the Theory of Planned Behavior [109], this
intervention targets \emph{behavioral belief} regarding sedentary behavior. Since behavioral
belief is part of the internal state and the treatment should be defined as part of the user's
context, a context variable should be included in our model to represent external influences on
behavioral belief from the environment. After defining the expected effect of a single treatment,
the CHBM can then be used to predict a detailed account of user response. The use of
simulations such as this in the process of designing controls is well-explored in many other

areas, but is nearly unheard of in behavioral science. This is in part due to the prevalence of
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abstract causal descriptive models and the novelty of CHBMs, but there remain several
important issues highlighted below which have not yet been addressed in this space.
5.3.1.3 Benefits of CHBMs in Persuasive Design

1) By using a CHBM with dynamical equations, the dynamics of relationships between
variables can be explicitly described as a part of the model.

2) The use of an explicit a priori model for intervention design helps researchers
formulate testable research questions and experiment designs.

3) The additional pre-study detail removes post-study modeling assumptions that can
dilute the underlying behavioral theory or invalidate study results.

4) The process of defining a CHBM itself can lead to new insights and research
guestions which are almost entirely unaddressed by existing theory.
5.3.1.4 Open Questions for CHBM-Empowered Persuasive Design

1) The process of defining a CHBM requires detailed knowledge of both the underlying
behavioral theory and the mathematics. Relatively few researchers today possess the
necessary skillset.

2) Modeling software exists for other engineering domains, but is not directly applicable
to the problem of CHBM development.

3) Software for running simulations to test the function of an \emph{a priori} CHBM is
non-existent.

4) Methodologies for creating an a priori CHBM are not fully established, and mappings
from existing causal descriptive models may be model-dependent.

5) The definition of a treatment's effect on a user is a subjective process. That is: how is
one to know what amount of behavioral belief a specific "sedentary activity fact treatment”

imparts?
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6) The running of a single simulation implies a generically applicable user model, but
there are likely to be multiple different responses to a single treatment which may depend on on
other contextual variables. In order to get a more realistic look at user responses to an
treatments, many simulations with varying parameters set to match the expectations of the
researchers should be run and analyzed; this would require a CHBM simulation software suite
that does not yet exist.

5.3.2 CHBMs at Run-time

In this section methods in which CHBMs may be used in the persuasive technology itself
are discussed. Options include model-based intervention optimization, timing, and online
ideographic modeling. A crucial step in the development of a persuasive technology today is to
establish a set of decision rules based on behavioral theory which codify the circumstances in
which a treatment should or should not be delivered. For instance, a treatment might be
delivered only during the daytime, right before a meal, only in a particular location, or in
response to a behavioral event such as cigarette use. Establishing a set of decision rules for a
small number of conditions is feasible for a simple intervention, but as the number of conditions
increases the number of rules required increases combinatorially. Even worse, when making
use of adaptive interventions this set of rules must be expanded even further to map between all
possible contexts and intervention permutations. Relying on simple decision rules loosely
guided by existing theory to define the optimization of intervention delivery to control a complex
system inevitably leads to under-optimized interventions, over-simplified models, and weakened
data. An additional problem with this approach is the use of a binary state (i.e. rule satisfied or
not) to optimize delivery over a continuous time. Because of this oversimplification, rules which

govern the behavior often become part of the theory underlying the application and are clumsily
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expressed as decision rules. In contrast, optimization of treatment delivery using a CHBM can
be done algorithmically to minimize the area between the desired and observed target behavior.

Because CHBMs are computational in nature, prediction of behavior is possible given
information about the user's present and future context. Furthermore, because the behaviors in
computational models are quantitative, an application could search available treatment options
to find one which produces the ideal amount of a target behavior. That is, given three treatment
options (A, B, C) with known effect on user context, the model can be run at t+1 for each option,
and the optimum result can be chosen. Methods for model predictive control are a well studied
topic of control systems engineering, but many methods cannot be applied to generic
formulations. Without a constrained form to guide optimization, all possible options must be
explored with equal feasibility in a brute-force search. With sufficient computational power this is
effective for simple problems, but this approach becomes increasingly infeasible as the number
of options and the number of future steps to be considered increase. If the functional form
describing variable relationships is constrained appropriately, however, mathematical
optimizations methods can greatly simplify this problem. Applications of model-predictive control
over intervention delivery have been explored for gestational weight gain [107], smoking
cessation [52], and fibromyalgia treatment [51] by limiting the functional form of the CHBM
specification to a differential equation based on a fluid-flow analogy. In this way, application
creators can implement software utilizing the advanced understanding of behavioral science
described by the CHBM, without direct knowledge of the underlying behavioral science.
5.3.2.1 Benefits of CHBMs for Persuasive Applications

1) Using a CHBM enables the use of optimization algorithms instead of decision rules.

This change is needed to apply complex control over target behaviors.
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2) CHBMs can be adapted to fit a user's needs at run-time, establishing an idiographic
model of each participant from the generalized CHBM.
5.3.2.2 Open Questions for CHBM-enabled Persuasive Applications

1) Optimization of intervention delivery can be computationally expensive unless the
functional form of modelling is restricted, and it is not yet clear what formulations are most
appropriate for behavioral construct relationships.
5.3.3 CHBMs Post-Study

Another rising challenge for persuasive technology researchers is the increasing
complexity of data analysis methods needed to handle large amounts of "in the wild" data.
Techniques designed to simplify construct relationships using statistical inferences between
distinct groups of measurements cannot address emerging research questions which span the
full spectrum of participant demographics, situational context, and time-scale. Contemporary
approaches apply data mining and machine learning techniques to fit more advanced models to
study data and identify key factors, but findings revealed in these exercises can be difficult to
generalize and interpret. For example, "even if empirical evidence suggests that a given factor
(e.g., psychological distress) marks state of vulnerability to a specific proximal outcome (e.g., it
is highly predictive of poor state coping capacity), there is often insufficient empirical evidence
concerning the cut-point of this factor that can inform the selection of one intervention option
over another." [42]. By using a model as the hypothesis of an experiment rather than focusing
solely on a particular relationship between two variables in specific conditions, research findings
can be generalized more easily to practical persuasive applications. Methods for evaluating
models, rather than evaluating correlation between two variables should be increasingly focused
upon in the analysis of behavioral data. While analysis of correlation between variables looks at

the statistical relationship between groups of data points, the evaluation of a model involves
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comparing the experimental data to the predictions of the model. CHBMs can be used with
contextual data to produce a time series of expected behavioral outcomes throughout the study.
The simulated "theoretical data" can then be directly compared to the "observed data" to
observe how the theory differs from the reality. The process of comparing theoretical predictions
to empirical data can be repeated with simulations from alternate theories and a goodness-of-fit
metric can be used to evaluate the hypothesis against alternatives. Additionally, unification of
existing behavioral models into this common paradigm would enable better collaboration
between proponents of different theories.

5.3.3.1 Benefits of CHBMs Post-Experiment

1) Analysis of experimental data can shift focus from individual construct relationships to
a larger view, evaluating the model as a hypothesis.

2) Comparison between different theories can be informed by a comparison of their
respective models using a goodness-of-fit metric against empirical data.

3) The use of CHBMs makes re-use of theory and therefore collaborative improvement
on existing theories easier, reversing the existing paradigm which has lead to a dizzying
multitude of fragmented theories and sub-theories.
5.3.3.2 Open Questions for CHBM Post-Experiment Methods

1) Methods for fitting a model to experimental data require restrictions on the functional
form of the relationships between variables, and the optimum functional form is not yet obvious.

2) Methods for evaluating the goodness-of-fit between empirical and simulated data
exist, but cutting-edge software for exploring the intricacies of data mismatch may be difficult to

apply to this use-case.
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5.4 Conclusion

In this chapter we have offered supporting terminology, the CHBM formalization, and a
set of open challenges to promote the interdisciplinary discussion needed to push forward the
emerging field of JiTAlI engineering. The progression of behavioral science towards
computational modeling has progressed more slowly than in other scientific domains because of
the limited amount of detailed, time-intensive contextual and behavioral measures available.
This progression from causal descriptive modeling to causal explanatory modeling and
increased mathematical rigor is a natural progression which parallels historical trends in the
natural sciences. Now that behavioral and contextual data is becoming accessible, we should
expect to see a similar paradigm shift in the behavioral sciences. It is our hope that this
formative work towards Computational Human Behavior Modeling and the methods highlighted
here act as a jumping-off point for others on the forefront of this impending paradigm shift who
can use these methods to unlock the power of context-aware persuasive application driven by

CHBMs.
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CHAPTER 6: DESIGNING SOFTWARE TO AID DEVELOPMENT OF CHBM?

Computational Human Behavior Models (CHBMSs) provide a mathematical model “which
describes how context is transformed into a behavioral outcome through the internal state of the
human system” [91]. CHBMs are a robust method of defining Just-in-Time Adaptive Intervention
(JITAD) behavior, but as the level of intervention tailoring increases, methods of modeling the
relationships between sensor/EMA [49] data, user behavior, and application behavior will
become increasingly important. The modeling methods of CHBMs are unfamiliar to behavioral
scientists, and this remains a significant roadblock for the advancement of JiTAI systems. This
chapter attempts to address this roadblock through the creation of methods and software which
help behavioral scientists use CHBMs in their research. A summary of our iterative methodology
for creating the BehaviorSim Model Builder is presented. BehaviorSim acts as a
behavioral-scientist-facing software for development of computational models of human
behavior for use in JiTAls. We present insights gained at each stage of the development
process, followed by a discussion section which formulates generalizable knowledge from our
specific lessons learned that may be of use to others designing JiTAl development support

software, or those targeting behavioral scientists as a user group.

3 This chapter has been adapted from an article published and presented at the International
Conference on Applied Human Factors and Ergonomics. Murray, T., Hekler, E., Spruijt-Metz, D., Rivera,
D. E., & Raij, A. (2017). Lessons Learned in Development of a Behavior Modeling Tool for Health
Intervention Design: BehaviorSim. In Advances in Applied Digital Human Modeling and Simulation (pp.
279-290). Springer International Publishing. Permission to reproduce here is included in Appendix A.
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6.1 Methodology
6.1.1 Survey of Behavioral Scientists

A preliminary survey was given to a group of behavioral scientists in order to gauge the
general perceptions and opinions on the development of behavioral models to support JiTAIs. In
this survey we focused on a few key elements of the model building process to greatly simplify
and shorten the modeling exercise. Contextual and behavioral outcomes based on physical
activity were given, and user efforts were focused on defining the inner workings of the human
system within these constraints. Participants were asked to describe the human system by
sketching a time-series to represent their expectations, listing relevant constructs, and
describing their constructs as they related to outcomes. Participants were also asked to
complete survey items about the barriers facing modeling and simulation in behavioral science.

Approximately 50 surveys were distributed following presentations on behavioral
modeling and simulation at the 35th Annual Conference of the Society of Behavioral Medicine.
Out of these 50, 12 surveys were returned. In general, users had trouble with even the simplified
modeling exercise. We also believe the low response rate to be indicative of the difficulty of the
guestionnaire, as it seemed as though all 50 participants who initially accepted the survey did
attempt to complete it, but were unsatisfied with their answers and did not submit their
responses. Of those few submitted, most did not stray far from the given example, and others
provided very different solutions which (although helpful for conveying an abstract description of
their model) could not be reconciled with the modeling paradigm presented. That is, the
solutions provided abstract descriptions of the model, but they did not convey enough detail to
form a CHBM. Participants seemed to find the sketching of time-series particularly challenging,
and in the survey questions patrticipants reported that the mathematics and programming

concepts required for developing simulatable models were overwhelming. However, nearly all
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participants expressed a desire for increased collaboration between disciplines and a need for
software tools to help them apply and validate these methods. These findings confirmed the
need for modeling software tools to bridge the gap between systems theory and behavioral
scientists.

6.1.2 BehaviorSim Model Builder v1

Using findings from the user study we developed proof-of-concept software to aid
behavioral researchers with the task of building a computational behavioral model. The
software, called the behaviorSim Model-Builder, took a step-wise approach towards the
model-building process.

First, users are asked to list environmental inflows, internal state variables, and
behavioral outflows of the model explicitly during the "think" stage. The “think” stage allows
users to list the sensor measures as “context” or “behavioral”. “Context” is a measurement of the
environment (e.g. location), and “behavioral measure” is a measure of a participant's conscious
or unconscious actions. “Contracts” are variables used to represent everything in between

context and behavior which are not directly measured.

Constructs
Context Behaviors

physical activity self efficacy %
GPS position % = o

caloric intake

Figure 23: BehaviorSim v1 “think” user interface. Users list contextual variables, internal state

variables (constructs), and behavioral measures to be used in their model.

Next, users are prompted to define the connections between nodes, "drawing" the

model's structure. This is accomplished by specifying the connections using a simple Diagram
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Specification Language (DSL) to denote connections between the context, state, and behavior

variables given in the previous step.

CODE YOUR DIAGRAM HERE INFORMATION FLOW DIAGRAM OF YOUR MODEL m

Verbal Persuasion -> Sell Efficacy
Vicarious Experience -> Selfl Efficacy Verbal Fersuasin Vicarious Experience
Sell Efficacy -» Physical Activity Level

Figure 24: BehaviorSim v1 “draw” section. Shows DSL input box and information-flow graph.

SELECTED NOD

For VAR NAME,K use i ar Combinatsor
cixd
consir? = 1 * giud

Figure 25: BehaviorSim v1 “specify” user interface. Showing node as a function its inflows.
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Finally, users are required to "specify" the functional relationships at each node's
inflow(s). Nodes are highlighted one-at-a-time and the relevant section of the graph including
only the node in question along with its direct inflows and outflows is shown. Users are asked to
select a functional form which should be used to compute the highlighted node from its inflows.

Users are also asked to specify a specific set of constants to use in a test instance of the model.
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These constants are used to compute a time-series representing the signal generated for this
simulation instance.

As a very simple example, consider the following model of physical activity (PA): firstly
we can name social pressure (SP) as an environmental inflow, normative belief (NB) as an
internal state variable, and step count (SC) as a behavioral outflow; next we specify connections
SP -> NB -> SC; lastly, we can specify that the connections (SP->NB and NB->SC) both
represent simple linear relationships.

The model builder was reviewed by an expert panel of 2 behavioral scientists and 1
human-computer interaction expert. Though the steps in the outlined model development
process seemed appropriate, it quickly became obvious that a step-wise design is not optimal.
Users who are forced to explore the process step-by-step have difficulty understanding how
earlier choices related to later results, and feel constrained by previous choices rather than
backtracking to revise the model. This design does not allow for quick iteration on models, and
requires the user to maintain a great deal of planning information internally. Though the
information flow diagram (figure 24) employed in this version worked well to convey information
about the model to the users, the graph was also assumed to be interactive and reviewers made
attempts to modify the graph by clicking. Similarly, reviewers attempted to select nodes in the
specification stage (figure 25) by clicking on them. Our review concluded that a less constrained
approach to the stages of the modeling process was needed, and a greater focus on the
graphical model could greatly improve user experience. Furthermore, reviewers felt that the rift
between behavioral scientists and the modeling methods had not been adequately addressed;
more was needed to communicate the treatment of context, constructs, and behavioral

measures as time-series in the “specify” stage.
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6.1.3 BehaviorSim Model-Building Tutorial

After reviewing v1 of the BehaviorSim Model Builder tool, a tutorial was designed to help
bridge the knowledge gap for new modelers looking to use the tool. In theory, the tutorial would
help users see the bigger picture before diving into the stepwise process. The tutorial was
implemented as a walk-through of a simple example model's internals. The tutorial introduced a
hybridized information-flow and time-series graph, wherein each node of the graph contains a
time-series spanning a common time-frame. A user interface for adjusting model parameters
and updating time-series values instantaneously was also overlaid onto this hybrid graph (see
figure 26). This real-time parameter tweaking enables some degree of reconciliation with
expectations of the data.

The same expert panel review process was used for the evaluation of the tutorial.
Through this evaluation it became clear that, although we had taken a step in the right direction,
an even more explicit definition of terms was needed in order to clarify persistent disciplinary
differences. Reviewers also wanted better explanation of model input parameters and of the
functional definition of the system. This tutorial included a specific scenario encoded as a set of
time-series which defined the environment over time. Reviewers were not content with the
hard-coded environmental inputs and wanted to be able to define how the contextual inflows
changed over time. Though the hybrid graph was found helpful in conveying the connection
between path diagram nodes and time series, the shared time-axis was not obvious, and
reviewers expressed a need for more explicit x and y axes as well as a better explanation as to
what "10 units of self efficacy” actually means. The time-series view was found to be both critical
for the development of an accurate model, and valuable as a pedagogical exercise for users

trying to internalize model formulations.
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Verbal Persuasion
HNumbeér of comlpiments given

Physical Activity Level |

subject PA, measured by pedometer

Self-Efficacy
percieved self-efficacy of PA

scale of effect

Vicarious Experience
Amount of exposure to PA avatar

“responsiveness”

Figure 26: BehaviorSim tutorial merging time-series and information-flow graph.

6.1.4 BehaviorSim Model Builder v2

Using what we had learned so far, the BehaviorSim Model Building tool was re-designed
and re-assessed. In this version all steps of the modeling process (think, draw, specify) are
unified into a single-page application (see figure 27), allowing users to see how choices
influence the model in real-time. This design allows users to iterate on their design more easily.
The time-series charts popular in the tutorial were added as a "mini-simulation” to help users to
visualize how variables change over time according to their model formulation. To address the
terminology gap which plagued v1, a set of tool-tips were added which revealed detailed
definitions for key terms used in the user interface. In addition, the second version incorporates
findings from the v1 tutorial, adding a "miniature simulation" to the application to allow for
"reconciliation” with model expectations.

In this version of the tool, users declare constructs and define the structure of their
model simultaneously. In contrast to version 1, where the construct type had to be input by the

user, the type of each node (contextual input, internal state, or behavioral measure) is inferred
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from the number of inflows and outflows. Source nodes are assumed to be contextual input, sink

nodes assumed to be behavioral measures, and all others are treated as internal state nodes.

Code your diagram here ﬂ Information Flow Diagram of your model  (click to select a node)

color key: | Selected Node | Completed Node |
a-=b

az-=b
a3-=b
b-=c
a2--h2
b2-=c2

C ol
s
Mini-simulation: b's parents. selected node mini-simulation
a b
- W
a3

Selected Node Model Specification

We must define a formula to describe how information flows

Support/Contact into b. | Linear Combination v
Confused? Want to learn more? Don't hesitate to contact us! bfa, a2, a3, 1) = c_a"alt) +c_a2"a2(t) +c_a3"a3(t))
c_a=|1

* Report bugs & feature requests using the issue tracker
* Contact tylarmurray@mail.usf.edu with any other
questions/comments. [ ]

c_az=|1

Figure 27: BehaviorSim Model Builder v2 combines elements into a single view.

The "miniature simulation" concept allows users to specify hypothetical contexts in which
to explore the model dynamics, without the need to specify the full model. Users can specify
environmental inflows for the simulation, choosing from adjustable presets (square wave, step
function, random walk, or constant value). Selecting nodes on the graph by clicking, users can

traverse the graph in any order. Time-series plots of inflows as well as the resulting outflow at
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each node are provided using the miniature simulation model instance. Internal state and
behavioral measure nodes are specified similarly to environmental inflows through
customization of function presets such as "linear combination" and "fluid flow analogy" [110].

To evaluate this design, this version was used as part of a structured exercise and
interview outlining the design of a JiTAI to combat obesity. Based on recent work done to define
the JiTAl design use-case [42], participants were asked to walk through a series of steps
including “identify the distal outcome of your JiTAI", “list the key factors affecting your distal
outcome at the hour-to-hour level”, and “what tailoring variables will you use in your JiTAI".
Intermixed with these discussions, participants worked together with the staff to express these
ideas as a CHBM using the BehaviorSim Model Builder. As the exercise progressed, the staff
took an increasingly passive role, ending with a fully unassisted modeling task. A think-aloud
protocol was applied while the software was in use, and the concluding interview gives insight to
what users find most valuable, least valuable, and most in need of improvement. Preliminary
findings from this exercise completed with 4 behavioral researchers highlight both the strengths
and the remaining weaknesses of our tool.

Though the single-page design of version two did seem to allow for increased ability to
iteratively explore models, reviewers now found the user interface somewhat overwhelming.
Upon starting the review, users often felt unsure where to start. Furthermore the connection
between the information flow graph and the related interface elements below was not obvious.
Reviewers did identify the relationship after some exploration, however. Additionally, the
common user interface for specifying constructs regardless of node type broke down the
distinction between environmental inflows, state variables, and behavioral outputs. This lead to
to some confusion when specifying the various types of nodes. Further contributing to this

problem, the meaning of the mini-simulation was not always clear to reviewers, though the
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inclusion of time-series graphs was found helpful for understanding the model functions and
their parameters once explained. Nodes on the graph were made to change color when the
specification process was complete, but reviews revealed that this was not a significant enough
indicator of node "completeness", and the user is sometimes unsure when they should feel free
to move to the next node. Inclusion of a "next node" button which appears upon node
specification completion may be all that is needed to help alleviate this issue.
6.2 Discussion

Our findings above reveal specific weaknesses in our design, and through analysis of
these findings we present the following design guidelines for any software made to empower
JiTAl developers. Firstly we outline a rough JiTAl developer user persona based on our
assessment of the general population of researchers in behavioral intervention design. Next, we
propose user stories and use-case details for the task of JiTAl design and evaluation. Lastly, we
provide some generic design guidelines which we have found to be particularly relevant in this
design space.
6.2.1 JiTAI Developer User Persona

In general, JiTAI developers are behavioral researchers who see the powerful potential
of ubiquitous computing for high-frequency data collection, automated analysis, intervention
deployment, and personalization. It is important to note that the research questions of a JiTAI
researcher often differ significantly from the questions a behavioral scientist might typically
have. The "traditional" way of modeling for behavior change relies primarily on statistical data
analysis techniques to find relationships between variables on large time-scales. In contrast, the
JiTAl researcher needs to translate these relationships into a small-time-scale model which

provides guidance regarding which interventions are most effective at which specific time(s).
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The JiTAI developer wants to turn a patient story into a set of equations that can be
handled by an automated system. However, JiTAl developers typically do not have the level of
familiarity with modeling systems to define computational psychological models mathematically.
This is supported by our findings wherein we encounter more difficulty than expected using
time-series as a common ground. Furthermore, the psychological models commonly used are
ill-specified at the (small) timescales of greatest interest, and often do not fit commonly used
modeling paradigms - making mathematical definition a unique challenge for even a systems
engineer.

The JiTAl developer wants to deploy and test a hypothesis by comparing model
predictions to experimental data. Statistical analysis techniques typically used to assess control
vs experimental group differences are much less applicable to this problem, but the JiTAI
developer often has little experience applying goodness-of-fit metrics.

6.2.2 Adaptive Interface

The science of JiTAls is young, and (as our user persona shows) behavioral scientists
looking to work with JiTAls are likely to run into many new concepts. The potential complexity of
a JiTAIl system, however, may benefit from the use of advanced and specialized graphs, charts,
and user interfaces. Additionally, we found overlapping terminologies to be a common pain
point; meaning that new users may not recognize the need to investigate the definition of a term.
Thus, the needs of a novice user versus an expert user may be very different. Because of this,
software to support JiTAlI development needs to promote the development of expertise in both
the system and the relevant concepts through steady changes to the user interface [111]. In our
case, a guided walk-through of the software interface was sufficient, but we believe that a more

graded approach would be more effective.
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6.2.3 Enable Quick Iterations

The value of iterating on a design spans many domains, and is very applicable to the
development of JiTAls. Through our studies we have found that the development of even a
simple JiTAI requires many iterations. Thus, a software to aid in JiTAl development must allow
for quick and easy modification, comparison, and reversion. A comparison between the usage of
our multi-staged model builder versus the single-page application showed a dramatic increase
in the number of model iterations along with reported user comprehension. Iterations on the
model tended to follow a moment of realization or the learning of a new concept. Thus, allowing
for quick iterations allows for the user to more quickly apply newly gained expertise, yielding a
better model and increased understanding.

To encourage iteration in the JiTAl development process, assessment tools available
part-way through the process (like the mini-simulation time-series) allow users to test their
mental model of the system against its digital representation. Allowing for more assessment
points throughout JiTAI development allows users to identify problems early and iterate before
the error cascades further through the process.

6.2.4 High-Level Visuals to De-internalize Models

Traditionally, psychological models of human behavior are meant to be guidelines for
thinking about human behavior. When using these models, the researcher must internalize the
model and think through the participants' state. With JiTAlI models, internalization of the full
system becomes impossible due to the rise in specificity and complexity. Thus, JiTAI
development software must provide visualizations of the system to ease cognitive load on the
user. Focus plus context displays [112] can be used to allow users to delve into the specifics of
a portion of the model without losing the larger context. In the behaviorSim Model Builder, we

focus on the specification of a single variable at a time, and highlight this variable’s context in an
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information-flow path diagram of the model structure. This dual-viewing-area approach works
well for comparing variable details, but the use of a zoomable interface such as is employed in
some flow-based programming [113] tools may help alleviate the noted disconnect between
specification and overview Uls.
6.2.5 Customized Interface

Though our JiTAI developer persona yields widely applicable general user stories, it is
also important to recognize the diversity of the JiTAI developer user group. JiTAls are applicable
to any area of behavior change; just a few popular proposed JiTAl applications include
management of eating behaviors, physical activity, smoking cessation, drug abuse, PTSD, and
stress. Within each of these many application domains are a myriad of behavioral theories -
further adding to the diversity of the user group. Each of these sub-user-groups may have
slightly different needs as they develop a JiTAl. Furthermore, a JiTAl development software
requires a standardized behavioral model or JiTAI format, and with that comes the opportunity to
enable easy sharing and searching of JiTAI designs. Thus, personalization of the software
interface - to adapt the process or to offer relevant information [114] - can greatly improve user
experience in this domain.
6.3 Conclusion

In the quantified self era, we can now capture detailed, high frequency, context-specific
measures of human behavior. Access to such data has the potential to change personal health,
if only we could make sense of the hidden insights held within these datasets. Just-in-Time
Adaptive Interventions are one application which stands to benefit from these insights and which
may have great impact in applied behavioral health. One approach is to apply systems-thinking
to help model and understand the data. The challenge is that health professionals and scientists

do not usually have the experience or tools to apply systems thinking to health challenges.
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In this chapter, we describe preliminary work on understanding how HCI and
user-centered iterative design can be used to transform these data into positive behavioral
health outcomes. We ran several rounds of user-centered iterative design, and identified a
driving user persona and design guidelines for next-generation tools for behavioral health. In
particular, our qualitative analysis indicates behavioral scientists need: 1) ways to gain expertise
in systems-thinking, 2) rapid iteration through multiple theoretical designs, 3) managed cognitive
load when analyzing complex models using visualization of systems and their dynamics, and 4)
personalization of such tools to the behavioral problem at hand, given the great diversity and
complexity of human behavior. Taking these guidelines into account, we are evolving the
BehaviorSim system to better enable behavioral health researchers and practitioners to
leverage high frequency, context-specific measurements and design predictive, preventive,

personalized and participatory health interventions.
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CHAPTER 7: CONCLUSION

The mass of personal health data available for analysis is quickly growing with no end in
sight, and research is struggling to keep up. Simultaneously, an increasing percentage of health
care expenditure is spent to manage chronic conditions which are often better treated through
improved behavioral habits. The need for innovative, patient-driven health care continues to
grow with the rising cost of health care. Existing research suggests that Just-in-Time Adaptive
Interventions (JiTAls) have the potential to leverage insights encoded in the increasingly
available health and behavioral data, however, this area of research remains largely uncharted.
The formative work presented in these chapters represent a significant step towards bringing
engineering methodology to human behavior modeling and simulation.

The many benefits of Computational Human Behavior Models (CHBMs) have been
enumerated and a vision of the potential utility brought to JiTAI design, implementation, and
data analysis has been presented. It is made clear in this work that the development and use of
Computational Human Behavior Models (CHBMS) is critical for the continued advancement of
JiTAls. CHBMs are the only known paradigm which allows for relatively concise codification of
the complex application behaviors needed in order for mHealth applications to leverage
contextual and historical user data and deliver optimally tailored and perfectly timed
interventions. The formal definitions for terms relevant to CHBMs and the demonstration of their
application can serve as a foundation upon which future research can build.

Carrying forward the motivating example of user-avatar-based interventions as

previously presented, the real-world study participants of the mAvatar study could be modeled.
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The study design attempts to influence users to raise or lower their ‘attitude’ of physical activity
on alternating days and observes the resulting physical activity levels. This could be modeled
using a square wave input as the user’'s environment is changed by the intervention.
Comparison of the physical activity level measured in real-world results with the predicted
physical activity levels from the simulation could provide validation of simulation methods.
Furthermore, the simulation could be improved through comparative analysis similar to that
presented in the InterventionViz chapter. Insights regarding the dynamics of the intervention
effect can be used to adapt the nomothetic model and systems which adjust a personalized
model based on incoming data may be explored. Additionally, software may be developed to
ease the transition to dynamical modeling methods and empower behavioral scientists to design
JiTAls. Guidelines presented in this work serve to inform the design of this software, and help to
characterize the user base and their needs. These next steps are likely to have profound impact
on personal health management and the field of behavioral science. Furthermore, these

advancements depend on foundational works such as presented here.
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